不同种植模式下黄连根际土壤理化特性及细菌群落结构变化Variation in physicochemical properties and bacterial community structure in rhizosphere soil of Coptis chinensis tow cropping modes
王钰;潘媛;伍晓丽;莫让瑜;谭均;陈大霞;
WANG Yu;PAN Yuan;WU Xiao-Li;MO Rang-Yu;TAN Jun;CHEN Da-xia;Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing Key Laboratory of Chinese Medicine Resources, Institute of Material Medical Planting,Chongqing Academy of Chinese Materia Medica;
摘要(Abstract):
自然林下种植和人工搭棚种植是目前黄连大生产上主要的种植模式,研究这2种种植模式对根际土壤理化性质及细菌群落结构的影响,有助于深入了解黄连土壤健康状况,为土壤改良及黄连生态种植提供科学依据和理论指导。该研究采用高通量测序技术对2种模式下一至五年生黄连根际土壤中细菌群落进行测定,分析了土壤细菌的alpha多样性、群落组成、群落结构差异以及土壤理化性质与细菌群落的关系。结果表明,在2种种植模式下,细菌多样性都是随种植年限的增加呈现增加、减少再增加的动态变化过程。将不同种植模式下同一年生黄连根际土壤相比,自然林种植模式下一年生黄连土壤细菌的多样性显著低于人工搭棚;2种种植模式下,二至五年生黄连根际土壤细菌多样性无显著性差异。在自然林种植模式下共计检测到53个门、60个纲、140个目和266个科;人工搭棚模式下共计检测到54个门、65个纲、140个目和264个科。在这2种种植模式下,丰度前10的优势细菌门占90.14%~93.29%,未被鉴定的细菌门占3.15%~3.92%。2种种植模式下群落丰度前10的优势细菌门种类相同,分别是变形菌门、酸杆菌门、放线菌门、拟杆菌门、浮霉菌门、绿弯菌门、疣微菌门、芽单胞菌门、厚壁菌门和蓝细菌门,但在丰度排序上存在差异。MetaStat分析结果表明,在人工搭棚模式下黄连根际土壤中的芽单胞菌门丰度显著高于自然林种植模式(P<0.05)。不同种植模式下相同年份黄连根际土壤细菌群落结构分析结果表明:一至四年生黄连根际土壤细菌群落结构存在显著差异,其中一年生样品之间的差异最大;随着种植年限增加,差异有逐渐减小的趋势;五年生样品之间细菌群落结构已无显著差异。细菌群落结构与土壤理化性质的RDA分析表明,环境因子对黄连根际土壤细菌的影响力由大到小依次为:pH>速效磷>全磷>全钾>容重>全氮>速效氮>有机质。
The natural forest and artificial shed are the main cropping modes of Coptis chinensis. This study is aimed to reveal the rhizosphere soil bacterial community structure difference between under tow C. chinensis cropping modes-natural forest and artificial shed, and to assist us to completely understand soil quality condition,and provide theoretical guidance for soil improvement and C. chinensis planting. The rhizosphere soil samples of 1-5-year-old C. chinensis under tow cropping modes-natural forest and artificial shed were collected. Illumina high-throughput sequencing technology was used to analyze the alpha diversity, community composition, community structure of soil bacteria under the tow cropping modes,and the effects of soil nutriment indices on soil bacterial community structure. Through the analysis of species number, Shannon, Chao1 index and ACE index of bacterial community, it was found that the bacterial diversity of 1-year-old C. chinensis soil under natural forest cropping mode was significantly lower than that under artificial shed cropping mode, and the diversity of bacterial communities in soil of 2-5-years old C. chinensis were not significant different between two cropping modes. A total of 53 phyla,60 classes,140 orders and 266 families were detected in the rhizosphere soil of C. chinensis under the cropping modes of natural forest, respectively. The rhizosphere soil of C. chinensis under the cropping modes of artificial shed included 54 phyla,65 classes,140 orders and 264 families, respectively. Under the two cropping modes, the top 10 dominant species of bacterial community abundance are the same, they are Proteobacteria, Acidobacteria, Actinobacteria,Bacteroidetes, Planctomycetes, Chloroflexi, Verrucomicrobia, Gemmatimonadetes, Firmicutes and Cyanobacteria, but there are differences in the abundance sequence. The top 10 dominant species of bacterial community abundance accounted for 74.36% to 74.30% of the total bacteria, and 3.15% to 3.92% of the bacteria are unclassified. The results of Metastat analysis showed that the abundance of Gemmatimonadetes in the rhizosphere soil of C. chinensis under the cropping modes the artificial shed was significantly higher than that under the natural forest cropping mode(P<0.05). MRPP analysis of community structure differences showed that under tow cropping modes, there were significant differences in the bacterial community structure of 1-4-year-old soil bacteria, among which the difference between 1-year-old soil samples was the largest. With the increase of cropping years, the difference gradually decreases, and there is no significant difference in the bacterial community structure between 5-year-old soil samples. RDA analysis and correlation analysis of bacterial community structure and soil physical and chemical properties showed that the order of environmental factors on the rhizosphere soil bacteria of Coptis chinensis was: pH>available P> total P> total K>bulk density>total N>available N>organic matter. The results are helpful to understand the soil health of C. chinensis and provide scientific basis and theoretical guidance for soil improvement and C. chinensis planting.
关键词(KeyWords):
黄连;根际土壤;理化性质;细菌;群落结构
Coptis chinensis;rhizosphere soil;physicochemical properties;bacteria;community structure
基金项目(Foundation): 国家重点研发计划项目(2017YFC1702601);; 重庆市基本科研业务费项目(jbky20190022);; 重庆市科卫联合中医药科技项目(ZY201802040)
作者(Author):
王钰;潘媛;伍晓丽;莫让瑜;谭均;陈大霞;
WANG Yu;PAN Yuan;WU Xiao-Li;MO Rang-Yu;TAN Jun;CHEN Da-xia;Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing Key Laboratory of Chinese Medicine Resources, Institute of Material Medical Planting,Chongqing Academy of Chinese Materia Medica;
Email:
DOI: 10.19540/j.cnki.cjcmm.20201122.105
参考文献(References):
- [1] 国家药典委员会.中华人民共和国药典.一部[S].北京:中国医药科技出版社,2015:303.
- [2] 王钰,李隆云,谭均,等.黄连生长发育及生物碱含量变化规律的研究[J].中国中药杂志,2018,43(20):4027.
- [3] 郭兰萍,张燕,朱寿东,等.中药材规范化生产(GAP) 10年:成果、问题与建议[J].中国中药杂志,2014,39(7):1143.
- [4] 郭兰萍,周良云,莫歌,等.中药生态农业——中药材 GAP 的未来[J].中国中药杂志,2015,40(14):3360.
- [5] 郭兰萍,黄璐琦,蒋有绪,等.药用植物栽培种植中的土壤环境恶化及防治策略[J].中国中药杂志,2006,31(9):714.
- [6] KRNNEDY A C.Bacterial diversity in agroecosystems[J].Agric Ecosyst Environ,1999,74(1):65.
- [7] 丁新景,敬如岩,黄雅丽,等.黄河三角洲刺槐根际与非根际细菌结构及多样性[J].土壤学报,2017,54(5):1294.
- [8] 叶功富,候杰,张立华,等.不同年龄木麻黄林地根际土壤养分含量和酶活性动态[J].水土保持学报,2006,20(4):87.
- [9] 王楠,高静,万修福,等.林下种植重楼和珠子参根际土壤与微生物量碳(C),氮(N),磷(P)生态化学计量特征研究[J].中国中药杂志,2020,45(18):4373.
- [10] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:30.
- [11] A?HAUER K P,WEMHEUER B,DANIEL R,et al.Tax4Fun:predicting functional profiles from metagenomic 16S rRNA data[J].Bioinformatics,2015,31(17):2882.
- [12] MARTIN M.Cutadapt removes adapter sequences from high-throughput sequencing reads[J].Embnet J,2011,17(1):10.
- [13] ROGNES T,FLOURI T,NICHOLS B,et al.VSEARCH:a versatile open source tool for metagenomics[J].Peer J,2016,4(10):e2584.
- [14] HAAS B J,GEVERS D,EARL A M,et al.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome Res,2011,219(3):494.
- [15] EDGAR R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nat Methods,2013,10(10):996.
- [16] LIGI T,OOPKAUP K,TRUU M,et al.Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing[J].Ecol Eng,2014,72:56.
- [17] JIANG X T,PENG X,DENG G H,et al.Illumina sequencing of 16S rRNA tag reveled spatial variation of bacterial communities in a mangrove wetland[J].Microb Ecol,2013,66(1):96.
- [18] ZANG Y G,CONG J,LU H,et al.An integrated study to analyze soil microbial community structure and metabolic potential in tow forest types[J].PLoS ONE,2014,9(4):e93773
- [19] 万盼,胡艳波,张弓乔,等.甘肃小陇山油松与柴胡栽培土壤细菌群落特征[J].生态学报,2018,38(17):6017.
- [20] SCHABEREITER G C,SAIZ J C,Pinar G,et al.Altamira cave paleolithic paintings harbor partly unknown bacterial communities[J].FEMS Microbiol Lett,2002,211(1):7.
- [21] 柳春林,左伟英,赵增阳,等.鼎湖山不同演替阶段森林土壤细菌多样性[J].微生物学报,2012,52(12):1489.
- [22] 丁新景,敬如岩,黄雅丽,等.黄河三角洲刺槐根际与非根际细菌结构及多样性[J].土壤学报,2017,54(5):1294.
- [23] 高秀宏,李敏,卢萍,等.呼和浩特市大青山白桦根际土壤细菌群落结构研究[J].生态学报,2019,39(10):3587.
- [24] WEI Z,YU D.Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing[J].Arch Microbiol,2018,200(4):653.
- [25] 王娟英,许佳慧,吴林坤,等.不同连作年限怀牛膝根际土壤理化性质及微生物多样性[J].生态学报,2017,37(17):5622.
- [26] 刘海,王玉书,焦玉洁,等.三种土壤条件下紫茎泽兰根际的酶活性及细菌群落状况[J].生态学报,2012,38(23):8456.
- [27] 蒋婧,宋明华.植物与土壤微生物在调控生态系统养分循环中的作用[J].植物生态学报2010,34(8):979.
- [28] SHEN C C,XIONG J B,ZHANG H Y,et al.Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J].Soil Biochem,2013,57:204.
- [29] 王钰,谭均,伍晓丽,等.自然林和人工搭棚种植模式下黄连根际土壤真菌群落结构变化[J].中国中药杂志,2020,45(21):5160
- [30] 卢慧,赵珩,盛玉钰,等.基于高通量测序的2种高寒草甸土壤原核生物群落特征研究[J].生态学报,2018,38(22):8081.
- [31] XIONG J B,LIU Y Q,LIN X G,et al.Geographic distant and pH drive bacterial distribution in alkaline lake sediments Tibetan Plateau[J].Environ Microbiol,2012,14(9):2457.
- 黄连
- 根际土壤
- 理化性质
- 细菌
- 群落结构
Coptis chinensis - rhizosphere soil
- physicochemical properties
- bacteria
- community structure
- 王钰
- 潘媛
- 伍晓丽
- 莫让瑜
- 谭均
- 陈大霞
WANG Yu- PAN Yuan
- WU Xiao-Li
- MO Rang-Yu
- TAN Jun
- CHEN Da-xia
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Chongqing Key Laboratory of Chinese Medicine Resources
- Institute of Material Medical Planting
- Chongqing Academy of Chinese Materia Medica
- 王钰
- 潘媛
- 伍晓丽
- 莫让瑜
- 谭均
- 陈大霞
WANG Yu- PAN Yuan
- WU Xiao-Li
- MO Rang-Yu
- TAN Jun
- CHEN Da-xia
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Chongqing Key Laboratory of Chinese Medicine Resources
- Institute of Material Medical Planting
- Chongqing Academy of Chinese Materia Medica