中国中药杂志

2015, v.40(07) 1291-1295

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

支持向量机法优化复方威灵仙喷雾剂的水提工艺研究
Optimization of extraction process of compound Clematidis Radix spray by support vector machine

赵立;李慧;刘一帆;付岩;刘宇灵;张晓莉;
ZHAO Li;LI Hui;LIU Yi-fan;FU Yan;LIU Yu-ling;ZHANG Xiao-li;Institute of Chinese Materia Medica,Chinese Academy of Chinese Medical Sciences;Key Laboratory of Random Complex Structures and Data Science National Center for Mathematics and Interdisciplinary Sciences,Academy of Mathematics and Systems Science,Chinese Academy of Sciences;

摘要(Abstract):

该文优化了复方威灵仙喷雾剂的水提工艺。实验采用L_9(3~4)正交试验设计复方威灵仙喷雾剂的水提工艺;熵值法求解各有效成分及出膏率的权重系数;再利用支持向量机结合遗传算法参数寻优建立模型,网格搜索优化复方威灵仙喷雾剂的工艺条件。结果显示经过新方法优化后的工艺条件为水提3次,每次2 h,加水倍数为6。支持向量机在此条件下的预测值与验证的实际值相比,相对误差为1.23%。将支持向量机法与传统的正交直观分析方法进行对比,结果表明这种新方法用于优化复方威灵仙喷雾剂水提工艺更精确,可靠。
L_9(3~4) orthogonal experiment was used to design the extraction technology of compound Clematidis Radix spray.Weight coefficients of active ingredients and dry extract rate were solved by information entropy.Support vector machine(SVM) was established and the model parameters were optimized through the genetic algorithm.Grid search algorithm was used for optimization of extraction technology of Clematidis Radix spray.The optimal extraction technology was to extract Clematidis Radix spray in water with 6times the weight of herbal medicine for 3 times,with 2 h once.Bias of value between real and predicted by SVM was 1.23%.SVM was compared with traditional intuitive analysis of orthogonal design.It indicates that the new method used to optimize the extraction parameters of compound Clematidis Radix spray is more accurate and reliable.

关键词(KeyWords): 正交设计;熵值法;支持向量机;遗传算法;网格搜索
orthogonal design;information entropy;support vector machine;genetic algorithm;grid search algorithm

Abstract:

Keywords:

基金项目(Foundation): 国家重点基础发展计划(973)项目(2015CB554406);; 中国中医科学院自主选题项目(Z02063);; 2009年中医药行业科研专项(200907001-5);; 北京市共建项目专项

作者(Author): 赵立;李慧;刘一帆;付岩;刘宇灵;张晓莉;
ZHAO Li;LI Hui;LIU Yi-fan;FU Yan;LIU Yu-ling;ZHANG Xiao-li;Institute of Chinese Materia Medica,Chinese Academy of Chinese Medical Sciences;Key Laboratory of Random Complex Structures and Data Science National Center for Mathematics and Interdisciplinary Sciences,Academy of Mathematics and Systems Science,Chinese Academy of Sciences;

Email:

DOI:

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享