苍术根茎转录组比较分析及倍半萜生物合成基因发掘Comparison of transcriptome of Atractylodes lancea rhizome and exploration of genes for sesquiterpenoid biosynthesis
曹也;张文晋;常丽坤;康传志;王月枫;谢冬梅;王升;郭兰萍;
CAO Ye;ZHANG Wen-jin;CHANG Li-kun;KANG Chuan-zhi;WANG Yue-feng;XIE Dong-mei;WANG Sheng;GUO Lan-ping;School of Pharmacy, Anhui University of Chinese Medicine;State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences;School of Traditional Chinese Medicine, Guangdong Pharmaceutical University;
摘要(Abstract):
为了研究苍术根茎不同生长发育时期转录水平差异,发掘其中倍半萜类化合物生物合成途径相关酶编码基因,对3个不同生长发育时期苍术根茎进行了转录组测序及比较分析。利用Illumina NovaSeq 6000技术对生长期(SZ)、开花期(KH)和采收期(CS)的苍术根茎进行了cDNA文库测序。共得到388 201 748条clean reads,比较SZ vs KH、KH vs CS、SZ vs CS,分别鉴定到16 925、8 616、13 702条差异表达基因(DEGs),注释到53条可能参与到倍半萜生物合成途径中的基因,其中甲羟戊酸(MVA)途径上注释到可能编码6种酶的9条基因,2-C-甲基-D-赤藓糖醇-4-磷酸(MEP)途径中注释到可能编码7种酶的15条基因,倍半萜和三萜生物合成代谢通路中注释到29条基因。通过基因共表达网络分析(WGCNA)得到与生长期、开花期和采收期相关的倍半萜类化合物生物合成关键基因分别有12、1、1条,再联合共表达网络图挖掘到多个倍半萜类化合物合成候选基因。该研究为探索研究苍术根茎中倍半萜类化合物的生物合成途径并解析其表达调控与倍半萜类物质累积的分子机制奠定了基础。
This study compared the transcriptome of Atractylodes lancea rhizome at different development stages and explored genes encoding the key enzymes of the sesquiterpenoid biosynthesis pathway. Specifically, Illumina NovaSeq 6000 was employed for sequencing the cDNA libraries of A. lancea rhizome samples at the growth stage(SZ), flowering stage(KH), and harvesting stage(CS), respectively. Finally, a total of 388 201 748 clean reads were obtained, and 16 925, 8 616, and 13 702 differentially expressed genes(DEGs) were identified between SZ and KH, KH and CS, and SZ and CS, separately. Among them, 53 genes were involved in the sesquiterpenoid biosynthesis pathways: 9 encoding 6 enzymes of the mevalonic acid(MVA) pathway, 15 encoding 7 enzymes of the 2-C-methyl-D-erythritol-4-phosphate(MEP) pathway, and 29 of sesquiterpenoid and triterpenoid biosynthesis pathway. Weighted gene co-expression network analysis(WGCNA) yielded 12 genes related to sesquiterpenoid biosynthesis for the SZ, 1 gene for the KH, and 1 gene for CS, and several candidate genes for sesquiterpenoid biosynthesis were discovered based on the co-expression network. This study laid a solid foundation for further research on the sesquiterpenoid biosynthesis pathway, analysis of the regulation mechanism, and mechanism for the accumulation of sesquiterpenoids in A. lancea.
关键词(KeyWords):
苍术根茎;倍半萜生物合成;转录组分析
Atractylodes lancea rhizome;sesquiterpenoid biosynthesis;transcriptome analysis
基金项目(Foundation): 国家自然科学基金重大项目(81891014);; 中国中医科学院科技创新工程项目(CI2021A03903)
作者(Authors):
曹也;张文晋;常丽坤;康传志;王月枫;谢冬梅;王升;郭兰萍;
CAO Ye;ZHANG Wen-jin;CHANG Li-kun;KANG Chuan-zhi;WANG Yue-feng;XIE Dong-mei;WANG Sheng;GUO Lan-ping;School of Pharmacy, Anhui University of Chinese Medicine;State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences;School of Traditional Chinese Medicine, Guangdong Pharmaceutical University;
DOI: 10.19540/j.cnki.cjcmm.20220615.101
参考文献(References):
- [1] 陈佳,解小霞,刘合刚.几个道地产区茅苍术指纹图谱及苍术素含量测定研究[J].中国实验方剂学杂志,2013,19(10):125.
- [2] 国家药典委员会.中华人民共和国药典.一部[M].北京:中国医药科技出版社,2020:168.
- [3] 张磊,欧阳臻,赵明,等.茅苍术中苍术酮、茅术醇、β-桉叶醇和苍术素的同时含量测定及其聚类分析[J].中国中药杂志,2010,35(6):725.
- [4] 郭金鹏,王萍,孙如宝,等.苍术挥发油化学成分及其抗菌活性的研究[J].时珍国医国药,2011,22(3):566.
- [5] 舒进,陈荣娥.苍术和艾叶及桉叶联合熏蒸在儿科病房空气消毒中的应用效果[J].临床合理用药杂志,2018,11(27):127.
- [6] 陈巧玲,袁琳,王也,等.北苍术粗多糖提取工艺优化及体外抗炎活性研究[J].生物医学工程与临床,2019,23(5):517.
- [7] 杨璐平,盖聪,周梦琪,等.麻黄-苍术治疗新型冠状病毒肺炎机制的网络药理学探讨[J].中药材,2020,43(7):1784.
- [8] 徐睿,单婷玉,吴君贤,等.茅苍术硫解酶AIKAT基因的克隆及原核表达分析[J].中国中药杂志,2021,46(19):4950.
- [9] 许静,孟利娜,南楠,等.北苍术多糖的酶法辅助超声提取工艺的优化及其体外抗肿瘤活性研究[J].现代药物与临床,2014,29(3):231.
- [10] 满维新,李胜春,冯永刚,等.苍术治疗窦性心动过速[J].实用中医药杂志,1995,2(2):34.
- [11] CHEN S,LUO H,LI Y,et al.454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng[J].Plant Cell Rep,2011,30(9):1593.
- [12] VRANOVá E,COMAN D,GRUISSEM W.Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J].Annu Rev Plant Biol,2013,64(1):665.
- [13] LICHTENTHALER H K,ROHMER M,SCHWENDER J.Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants[J].Physiol Plantarum,1997,101(3):643.
- [14] LIU W,ZHANG Z,LI W,et al.Genome-wide identification and comparative analysis of the 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGR) gene family in Gossypium[J].Molecules,2018,23(2):193.
- [15] AHMED S,ZHAN C,YANG Y,et al.The transcript profile of a traditional Chinese medicine,Atractylodes lancea,revealing its sesquiterpenoid biosynthesis of the major active components[J].PLoS ONE,2016,11(3):e0151975.
- [16] ESTéVEZ J M,CANTERO A,REINDL A,et al.1-Deoxy-D-xylulose-5-phosphate synthase,a limiting enzyme for plastidic isoprenoid biosynthesis in plants[J].JBC,2001,276(25):22901.
- [17] CORDOBA E,SALMI M,LEON P.Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants[J].J Exp Bot,2009,60(10):2933.
- [18] The Arabidopsis Genome Initiative.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J].Nature,2000,408(6814):796.
- [19] FENG Q,ZHANG Y,HAO P,et al.Sequence and analysis of rice chromosome 4[J].Nature,2002,420(6913):316.
- [20] WANG K,WANG Z,LI F,et al.The draft genome of a diploid cotton Gossypium raimondii[J].Nat Genet,2012,44(10):1098.
- [21] LI P,PONNALA L,GANDOTRA N,et al.The developmental dynamics of the maize leaf transcriptome[J].Nat Genet,2010,42(12):1060.
- [22] LAM H M,XU X,LIU X,et al.Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J].Nat Genet,2010,42(12):1053.
- [23] LIU H,SHI J,WU M,et al.The application and future prospect of RNA-Seq technology in Chinese medicinal plants[J].J Appl Res Med Aroma,2021,24:100318.
- [24] WENGER A M,PELUSO P,ROWELL W J,et al.Highly-accurate long-read sequencing improves variant detection and assembly of a human genome[J].Genomics,2019,doi:10.1101/519025.
- [25] TRAPNELL C,PACHTER L,SALZBERG S L.TopHat:discovering splice junctions with RNA-Seq[J].Bioinformatics,2009,25(9):1105.
- [26] KIM D,LANGMEAD B,SALZBERG S L.HISAT:a fast spliced aligner with low memory requirements[J].Nat Methods,2015,12(4):357.
- [27] MORTAZAVI A,WILLIAMS B A,MCCUE K,et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J].Nat Methods,2008,5(7):621.
- [28] AUDIC S,CLAVERIE J M.The significance of digital gene expression profiles[J].Genome Res,1997,7(10):986.
- [29] LANGFELDER P,HORVATH S.WGCNA:an R package for weighted correlation network analysis[J].BMC Bioinformatics,2008,9(1):559.
- [30] ZHANG T,ZHAO X,WANG W,et al.Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum[J].Plant Mol Biol Rep,2014,84(3):315.
- [31] HUANG Q,HUANG X,DENG J,et al.Differential gene expression between leaf and rhizome in Atractylodes lancea:a comparative transcriptome analysis[J].Front Plant Sci,2016,7:348.
- [32] 孙敬茹,卜俊玲,崔光红,等.姜黄植物不同发育阶段根茎中姜黄素类和萜类代谢物的积累和合成研究[J].中国中药杂志,2019,44(5):927.
- [33] LAULE O,FüRHOLZ A,CHANG H S,et al.Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J].Proc Natl Acad Sci USA,2003,100(11):6866.
- [34] KIYAMA H,MATSUNAGA A,SUZUKI G,et al.Monoterpene geraniol produced by rice terpene synthase 21 suppresses the expression of cell-division related genes in the rice bacterial pathogen,Xanthomonas oryzae pv.oryzae[J].Physiol Mol Plant Pathol,2021,115:101673.
- [35] CROWELL D N,HUIZINGA D H,DEEM A K,et al.Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine:farnesylcysteine lyase in Arabidopsis[J].Plant J,2007,50(5):839.
- [36] MANOLARIDIS I,KULKARNI K,DODD R B,et al.Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1[J].Nature,2013,504(7479):301.
- [37] BARABáSI A L,OLTVAI Z N.Network biology:understanding the cell′s functional organization[J].Nat Rev Genet,2004,5(2):101.
- [38] GREENHAM K,GUADAGNO C R,GEHAN M A,et al.Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa[J].eLife,2017,6:e29655.
- [39] HOLLENDER C A,KANG C,DARWISH O,et al.Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks[J].Plant Physiol,2014,165(3):1062.
- [40] GARG R,SINGH V K,RAJKUMAR M S,et al.Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea[J].Plant J,2017,91(6):1088.
- [41] BAI Y,DOUGHERTY L,CHENG L,et al.A co-expression gene network associated with developmental regulation of apple fruit acidity[J].Mol Genet Genomics,2015,290(4):1247.
- [42] EL-SHARKAWY I,LIANG D,XU K.Transcriptome analysis of an apple (Malus×domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation[J].J Exp Bot,2015,66(22):7359.
- [43] NIEUWENHUIZEN N J,WANG M Y,MATICH A J,et al.Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)[J].J Exp Bot,2009,60(11):3203.
- [44] YANG J,NIE Q.Engineering Escherichia coli to convert acetic acid to β-caryophyllene[J].Microb Cell Factories,2016,15:74.
- 曹也
- 张文晋
- 常丽坤
- 康传志
- 王月枫
- 谢冬梅
- 王升
- 郭兰萍
CAO Ye- ZHANG Wen-jin
- CHANG Li-kun
- KANG Chuan-zhi
- WANG Yue-feng
- XIE Dong-mei
- WANG Sheng
- GUO Lan-ping
- School of Pharmacy
- Anhui University of Chinese Medicine
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- 曹也
- 张文晋
- 常丽坤
- 康传志
- 王月枫
- 谢冬梅
- 王升
- 郭兰萍
CAO Ye- ZHANG Wen-jin
- CHANG Li-kun
- KANG Chuan-zhi
- WANG Yue-feng
- XIE Dong-mei
- WANG Sheng
- GUO Lan-ping
- School of Pharmacy
- Anhui University of Chinese Medicine
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University