丹参Sm14-3-3蛋白基因克隆、诱导模式及原核表达分析Gene cloning, induction, and prokaryotic expression of a Sm14-3-3 protein from Salvia miltiorrhiza
时晨晶;王世威;彭佳铭;许海玉;
SHI Chen-jing;WANG Shi-wei;PENG Jia-ming;XU Hai-yu;Tianjin University of Traditional Chinese Medicine;Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences;School of Traditional Chinese Medicine, Guangdong Pharmaceutical University;School of Pharmacy, Anhui University of Chinese Medicine;
摘要(Abstract):
14-3-3蛋白是植物体内一类重要的调控蛋白,对植物的生长发育及生物和非生物胁迫都具有重要的调控作用。该研究利用酵母双杂交从药用植物丹参cDNA文库中筛选并克隆到1个编码14-3-3蛋白基因(GenBank登录号为OM683281),该基因开放阅读框(ORF)由780 bp组成,编码259个氨基酸。生物信息学分析预测该蛋白的分子式为C_(1287)H_(2046)N_(346)O_(422)S_9,相对分子质量29.4 kDa,不含信号肽,为非跨膜蛋白。通过基因同源序列比对及进化树分析,证明该基因确实属于14-3-3蛋白家族,与拟南芥、水稻中的14-3-3蛋白基因家族亲缘关系较近。将丹参14-3-3基因构建到原核表达载体pGEX-4T-1上,在大肠杆菌BL21中,成功表达出重组蛋白。实时荧光定量PCR检测,确定该基因在丹参根、茎、叶、花不同组织部位中表达,叶中表达量最高,茎中次之,花中的表达量最低。15%PEG模拟干旱、植物激素水杨酸、茉莉酸甲酯和乙烯利诱导丹参植株,14-3-3基因表达水平在诱导的早期出现峰值,表明该基因能够快速响应干旱等非生物胁迫和水杨酸、茉莉酸、乙烯等植物激素处理。为后续研究14-3-3蛋白调控丹参酮生物合成及响应生物和非生物胁迫的分子机制奠定基础。
14-3-3 proteins are important proteins in plants, as they regulate plant growth and development and the response to biotic or abiotic stresses. In this study, a 14-3-3 gene(GenBank accession: OM683281) was screened from the cDNA library of the medicinal species Salvia miltiorrhiza by yeast two-hybrid and cloned. The open reading frame(ORF) was 780 bp, encoding 259 amino a cids. Bioinformatics analysis predicted that the protein was a non-transmembrane protein with the molecular formula of C_(1287)H_(2046)N_(346)O_(422)S_9, relative molecular weight of 29.4 kDa, and no signal peptide. Homologous sequence alignment and phylogenetic tree analysis proved that the protein belonged to 14-3-3 family and had close genetic relationship with the 14-3-3 proteins from Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. The 14-3-3 gene was ligated to the prokaryotic expression vector pGEX-4 T-1 and then transformed into Escherichia coli BL21 for the expression of recombinant protein. Real-time fluorescent quantitative PCR showed that the expression of this gene was different among roots, stems, leaves, and flowers of S. miltiorrhiza. To be specific, the highest expression was found in leaves, followed by stems, and the lowest expression was detected in flowers. S. miltiorrhiza plants were treated with 15% PEG(simulation of drought), and hormones salicylic acid, methyl jasmonate, and ethephon, respectively, and the expression of 14-3-3 gene peaked at the early stage of induction. Therefore, the gene can quickly respond to abiotic stresses such as drought and plant hormone treatments such as salicylic acid, jasmonic acid, and ethylene. This study lays the foundation for revealing the molecular mechanism of 14-3-3 protein regulating tanshinone biosynthesis and responding to biotic and abiotic stresses.
关键词(KeyWords):
丹参;14-3-3蛋白;基因克隆;原核表达;诱导模式
Salvia miltiorrhiza;14-3-3 protein;gene cloning;prokaryotic expression;inducible expression pattern
基金项目(Foundation): 国家自然科学基金重点项目(81830111)
作者(Authors):
时晨晶;王世威;彭佳铭;许海玉;
SHI Chen-jing;WANG Shi-wei;PENG Jia-ming;XU Hai-yu;Tianjin University of Traditional Chinese Medicine;Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences;School of Traditional Chinese Medicine, Guangdong Pharmaceutical University;School of Pharmacy, Anhui University of Chinese Medicine;
DOI: 10.19540/j.cnki.cjcmm.20220614.101
参考文献(References):
- [1] AITKEN A.14-3-3 proteins:a historic overview[J].Semin Cancer Biol,2006,16(3):162.
- [2] HUANG Y,WANG W,YU H,et al.The role of 14-3-3 proteins in plant growth and response to abiotic stress[J].Plant Cell Rep,2021,1:20.
- [3] CAMONI L,VISCONTI S,ADUCCI P,et al.14-3-3 proteins in plant hormone signaling:doing several things at once[J].Front Plant Sci,2018,9:297.
- [4] XU W F,SHI W M.Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots:analysis by real-time RT-PCR[J].Ann Bot,2006,98:965.
- [5] CHEN F,LI Q,SUN L X,et al.The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J].DNA Res,2006,13:53.
- [6] LU G H,DELISLE A J,DE VETTEN N C,et al.Brain proteins in plants:an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex[J].Plant Biol,1992,89:11490.
- [7] CAMONI L,VISCONTI S,ADUCCI P,et al.14-3-3 proteins in plant hormone signaling:doing several things at once[J].Front Plant Sci,2018,9:297.
- [8] YANG X W,LEE W H,SOBOTT F,et al.Structural basis for protein-protein interactions in the 14-3-3 protein family[J].Proc Natl Acad Sci USA,2006,103(46):17237.
- [9] ZHAO X,LI F,LI K.The 14-3-3 proteins:regulators of plant metabolism and stress responses[J].Plant Biol,2021,23(4):531.
- [10] 国家药典委员会.中华人民共和国药典.一部[M].北京:中国医药科技出版社,2020:77.
- [11] JIANG Z,GAO W,HUANG L.Tanshinones,critical pharmacological components in Salvia miltiorrhiza[J].Front Pharmacol,2019,10:202.
- [12] 包丽琼,陈同,靳保龙,等.丹参酮类化合物调控丹参根微生物组的研究[J].中国中药杂志,2021,46(11):2806.
- [13] 李志勇,王均琪,黎彩凤,等.中药新资源的功效与功能定位研究策略[J].中国中药杂志,2021,46(14):3455.
- [14] 李天祥,常广璐,李国辉,等.丹参培育中的关键问题和对策[J].时珍国医国药,2015,26 (12):3008.
- [15] ZHAN Z L,FANG W T,MA X H,et al.Metabolome and transcriptome analyses reveal quality change in the orange-rooted Salvia miltiorrhiza (Danshen) from cultivated field[J].Chin Med,2019,14:42.
- [16] GAO W,SUN H X,XIAO H,et al.Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza[J].BMC Genomics,2014,15:73.
- [17] MA Y,CUI G H,CHEN T,et al.Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza[J].Nat Commun,2021,12:685.
- [18] WANG Y J,SHEN Y,SHEN Z,et al.Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures[J].Plant Physiol Biochem,2016,107:364.
- [19] CHEVALIER D,MORRIS E R,WALKER J C.14-3-3 and FHA domains mediate phosphoprotein interactions[J].Annu Rev Plant Biol,2009,60:67.
- [20] YASHVARDHINI N,BHATTACHARYA S,CHAUDHURI S,et al.Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress[J].Planta,2018,247(1):229.
- [21] WANG P H,LEE C E,LIN Y S,et al.The glutamate receptor-like protein GLR3.7 interacts with 14-3-3ω and participates in salt stress response in Arabidopsis thaliana[J].Front Plant Sci,2019:1169.
- [22] SHIN R,JEZ J M,BASRA A,et al.14-3-3 proteins fine-tune plant nutrient metabolism[J].FEBS Lett,2011,585:143.
- [23] SAPONARO A,PORRO A,CHAVES-SANJUAN A,et al.Fusi-coccin activates KAT1 channels by stabilizing their interaction with 14-3-3 proteins[J].Plant Cell,2017,29:2570.
- [24] 陈晓玉,贺超,闫滨滨,等.丹参主产区栽培技术差异性调查分析[J].中国中药杂志,2019,44(7):1314.
- [25] 濮春娟,李鹏英,罗钰枝,等.不同类型的杀菌剂对丹参菌根效益的影响[J].中国中药杂志,2021,46(6):1368.
- [26] DENISON F C,PAUL A L,ZUPANSKA A K,et al.14-3-3 proteins in plant physiology[J].Semin Cell Dev Biol,2011,22:720.
- [27] CARRASCO J L,CASTELLó M J,VERA P.14-3-3 mediates transcriptional regulation by modulating nucleocytoplasmic shuttling of tobacco DNA-binding protein phosphatase-1[J].J Biol Chem,2006,281(32):22875.
- [28] HE Y,WU J,LV B,et al.Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress[J].J Exp Bot,2015,66(8):2271.
- [29] YOON G M,KIEBER J J.14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis[J].Plant Cell,2013,25(3):1016.
- 丹参
- 14-3-3蛋白
- 基因克隆
- 原核表达
- 诱导模式
Salvia miltiorrhiza - 14-3-3 protein
- gene cloning
- prokaryotic expression
- inducible expression pattern
- 时晨晶
- 王世威
- 彭佳铭
- 许海玉
SHI Chen-jing- WANG Shi-wei
- PENG Jia-ming
- XU Hai-yu
- Tianjin University of Traditional Chinese Medicine
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- School of Pharmacy
- Anhui University of Chinese Medicine
- 时晨晶
- 王世威
- 彭佳铭
- 许海玉
SHI Chen-jing- WANG Shi-wei
- PENG Jia-ming
- XU Hai-yu
- Tianjin University of Traditional Chinese Medicine
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- School of Pharmacy
- Anhui University of Chinese Medicine