不同光照强度对西洋参生长、皂苷含量及基因表达的影响Effect of light intensity on growth, accumulation of ginsenosides, and expression of related enzyme genes of Panax quinquefolius
刘紫祺;王仪;王秀;彭娜;杨姗姗;邵慧慧;焦晓林;高微微;
LIU Zi-qi;WANG Yi;WANG Xiu;PENG Na;YANG Shan-shan;SHAO Hui-hui;JIAO Xiao-lin;GAO Wei-wei;Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College;
摘要(Abstract):
适当的光照强度可以提高药用植物光合作用,利于植物积累生物量,提高关键酶活性,进而促进次生代谢产物的合成。为了解不同光强对西洋参生长及品质的综合影响,该研究采用4种不同光照强度40、80、120、160μmol·m(-2)·s(-2)·s(-1)进行温室砂培试验,测定了三年生西洋参的生长指标、光合特性以及6个人参皂苷的含量,同时检测了人参皂苷合成相关酶基因在西洋参叶、主根、须根的表达量。结果显示,在80μmol·m(-1)进行温室砂培试验,测定了三年生西洋参的生长指标、光合特性以及6个人参皂苷的含量,同时检测了人参皂苷合成相关酶基因在西洋参叶、主根、须根的表达量。结果显示,在80μmol·m(-2)·s(-2)·s(-1)光照强度下,西洋参总生物量和净光合速率均最高;120μmol·m(-1)光照强度下,西洋参总生物量和净光合速率均最高;120μmol·m(-2)·s(-2)·s(-1)光强下的西洋参总生物量略低于80μmol·m(-1)光强下的西洋参总生物量略低于80μmol·m(-2)·s(-2)·s(-1)处理,但根冠比达到6.86,显著高于其他处理(P<0.05);此时,地上及地下部分总皂苷的含量均最高,推测与叶中FPS、SQS、SQE、OSC、DS、P450基因以及主根中SQE、DS基因高表达有关。此外,该研究发现,120、160μmol·m(-1)处理,但根冠比达到6.86,显著高于其他处理(P<0.05);此时,地上及地下部分总皂苷的含量均最高,推测与叶中FPS、SQS、SQE、OSC、DS、P450基因以及主根中SQE、DS基因高表达有关。此外,该研究发现,120、160μmol·m(-2)·s(-2)·s(-1)光强可触发皂苷合成上游基因的上调表达,促进叶片中PPD型皂苷合成。然而,西洋参在弱光(40μmol·m(-1)光强可触发皂苷合成上游基因的上调表达,促进叶片中PPD型皂苷合成。然而,西洋参在弱光(40μmol·m(-2)·s(-2)·s(-1))和强光(160μmol·m(-1))和强光(160μmol·m(-2)·s(-2)·s(-1))下,叶片净光合速率、气孔导度、蒸腾速率均较低,地下物质积累减少;同时,主根中总皂苷含量下降,SQS、SQE、OSC、DS基因的表达量较低,而须根中皂苷含量与其合成酶相关基因表达相关性不强。综上,80、120μmol·m(-1))下,叶片净光合速率、气孔导度、蒸腾速率均较低,地下物质积累减少;同时,主根中总皂苷含量下降,SQS、SQE、OSC、DS基因的表达量较低,而须根中皂苷含量与其合成酶相关基因表达相关性不强。综上,80、120μmol·m(-2)·s(-2)·s(-1)光强均有利于提高西洋参产量和质量。以上研究结果为西洋参栽培中的合理遮荫提供了理论依据,对通过光调控提高西洋参的产量和质量具有指导意义。
Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 μmol·m(-1)光强均有利于提高西洋参产量和质量。以上研究结果为西洋参栽培中的合理遮荫提供了理论依据,对通过光调控提高西洋参的产量和质量具有指导意义。
Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 μmol·m(-2)·s(-2)·s(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 μmol·m(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 μmol·m(-2)·s(-2)·s(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 μmol·m(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 μmol·m(-2)·s(-2)·s(-1) light intensity was slightly lower than that with 80 μmol·m(-1) light intensity was slightly lower than that with 80 μmol·m(-2)·s(-2)·s(-1). The root-to-shoot ratio in the treatment with 120 μmol·m(-1). The root-to-shoot ratio in the treatment with 120 μmol·m(-2)·s(-2)·s(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-Ⅱ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 μmol·m(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-Ⅱ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 μmol·m(-2)·s(-2)·s(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 μmol·m(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 μmol·m(-2)·s(-2)·s(-1)) and strong light(160 μmol·m(-1)) and strong light(160 μmol·m(-2)·s(-2)·s(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 μmol·m(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 μmol·m(-2)·s(-2)·s(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.
关键词(KeyWords):
西洋参;光照强度;生长;光合特性;人参皂苷;人参皂苷合成相关基因
Panax quinquefolius;light intensity;growth;photosynthetic characteristics;ginsenoside;ginsenoside synthesis-related genes
基金项目(Foundation): 中国医学科学院医学与健康科技创新工程项目(2021-I2M-1-031);; 山东省重点研发计划(重大科技创新工程)项目(2019JZZY020905)
作者(Authors):
刘紫祺;王仪;王秀;彭娜;杨姗姗;邵慧慧;焦晓林;高微微;
LIU Zi-qi;WANG Yi;WANG Xiu;PENG Na;YANG Shan-shan;SHAO Hui-hui;JIAO Xiao-lin;GAO Wei-wei;Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College;
DOI: 10.19540/j.cnki.cjcmm.20220602.101
参考文献(References):
- [1] 国家药典委员会.中华人民共和国药典.一部[M].北京:中国医药科技出版社,2020:136.
- [2] 汤慧丽,王宪昌,李佳,等.西洋参皂苷类成分及其生物活性、质量控制的研究进展[J].中国中药杂志,2022,47(1):36.
- [3] 冉志芳,杨小彤,李瑞,等.山东栽培西洋参丛枝菌根真菌的多样性研究[J].中国中药杂志,2021,46(16):4103.
- [4] 王铁生,刘鹏举,王纪华,等.西洋参遮荫技术研究[J].人参研究,1990(1):30.
- [5] 孟繁莹,王铁生,王化民,等.西洋参光合生理特性[J].特产研究,1996(2):9.
- [6] 罗文熹,于国华,李凤玲,等.不同光强下西洋参的某些光合特性(简报)[J].植物生理学通讯,1990,26(1):35.
- [7] 于国华,苘辉民,罗文熹.不同光照强度对西洋参光合特性、营养成分和产量的影响[J].应用生态学报,1994(1):57.
- [8] 李万莲,宛志沪.参棚透光率对西洋参生长发育、产量品质的影响[J].人参研究,2000(3):11.
- [9] 李合生.植物生理生物实验原理和技术[M].北京:高等教育出版社,1999:130.
- [10] JIAO X L,LU X H,CHEN J A,et al.Effects of Fusarium solani and F.oxysporum infection on the metabolism of ginsenosides in American ginseng roots[J].Molecules,2015,20(6):10535.
- [11] 王康宇,刘伟灿,张美萍,等.西洋参不同组织部位中皂苷生物合成相关基因的表达研究[J].中国中药杂志,2018,43(1):65.
- [12] QI J,SUN P,LIAO D,et al.Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-Seq[J].PLoS ONE,2015,10(3):e0118558.
- [13] 平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报,2010,34(1):100.
- [14] KIM Y J,ZHANG D,YANG D C.Biosynthesis and biotechnological production of ginsenosides[J].Biotechnol Adv,2015,33(6):717.
- [15] PROCTOR J T A,PALMER J W.Optimal light for greenhouse culture of American ginseng seedlings[J].J Ginseng Res,2017,41(3):370.
- [16] 徐克章,曹正菊,陈星,等.人参光生理研究:Ⅱ.光强对人参叶片生长、叶绿素含量和光合作用特性的影响[J].吉林农业大学学报,1988,10(3):11.
- [17] GOMMERS C M M,VISSER E J W,ONGE K R S,et al.Shade tolerance:when growing tall is not an option[J].Trends Plant Sci,2013,18(2):65.
- [18] 张玉彬,刘文科.LED光质、光强对西洋参生长及光合作用的影响[J].照明工程学报,2018,29(6):85.
- [19] ZHANG K,WANG X,DING L,et al.Determination of seven major ginsenosides in different parts of Panax quinquefolius L.(American ginseng) with different ages[J].Chem Res Chin Univ,2008,24(6):707.
- [20] 刘俊文,徐美利,徐冰,等.西洋参不同部位皂苷成分研究[J].天津中医药,2019,36(7):715.
- [21] 余翠翠,魏建和.环境因子对植物萜类化合物生物合成的影响研究进展[J].西北植物学报,2019,39(9):1701.
- [22] JANG I B,LEE D Y,YU J,et al.Photosynthesis rates,growth,and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse[J].J Ginseng Res,2015,39(4):345.
- [23] 王静,匡双便,周平,等.二年生三七农艺和质量性状对环境光强的响应特征[J].热带亚热带植物学报,2018,26(4):8.
- [24] LANDI M,ZIVCAK M,SYTAR O,et al.Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments:a review[J].BBA-Bioenergetics,2020,1861(2):148131.
- [25] 刘娟,纪瑞锋,陈同,等.人参皂苷生物合成基因组织表达特性的研究[J].中国中药杂志,2017,42(13):2453.
- [26] 王佳,郑培和,许世泉,等.人参、西洋参不同部位中齐墩果酸型皂苷含量的对比分析[J].特产研究,2015(2):23.
- 西洋参
- 光照强度
- 生长
- 光合特性
- 人参皂苷
- 人参皂苷合成相关基因
Panax quinquefolius - light intensity
- growth
- photosynthetic characteristics
- ginsenoside
- ginsenoside synthesis-related genes
- 刘紫祺
- 王仪
- 王秀
- 彭娜
- 杨姗姗
- 邵慧慧
- 焦晓林
- 高微微
LIU Zi-qi- WANG Yi
- WANG Xiu
- PENG Na
- YANG Shan-shan
- SHAO Hui-hui
- JIAO Xiao-lin
- GAO Wei-wei
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- 刘紫祺
- 王仪
- 王秀
- 彭娜
- 杨姗姗
- 邵慧慧
- 焦晓林
- 高微微
LIU Zi-qi- WANG Yi
- WANG Xiu
- PENG Na
- YANG Shan-shan
- SHAO Hui-hui
- JIAO Xiao-lin
- GAO Wei-wei
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College