药理

银杏酮酯（GBE50）抗心律失常作用研究

王星禹，张志雄*，刘爱华
(上海中医药大学生理教研室，上海201203)

【摘要】目的：观察银杏叶提取物银杏酮酯（GBE50）对模型动物心律失常的药效并研究其机制。方法：采用乌头碱（Aco）、哇巴因（Oua）制作大鼠整体心律失常模型，体表心电记录；哇巴因和高钙诱发豚鼠右心室乳头肌迟后除极和触发活动，细胞内微电极记录。观察银杏酮酯对上述心律失常模型的影响。结果：8.16 mg·kg\(^{-1}\) GBE50 iv 提高了哇巴因诱发室性早搏（VF）的阈剂量；16 mg·kg\(^{-1}\) GBE50 提高了哇巴因诱发室性心动过速（VT）的阈剂量（P<0.05, P<0.01）。GBE50 能够提高乌头碱致心律失常的阈剂量；其中 8 mg·kg\(^{-1}\) GBE50 iv 能够提高乌头碱诱发 VT 的阈剂量，16 mg·kg\(^{-1}\) GBE50 iv 能够提高乌头碱诱发的延迟性纤维（VF）、心脏停搏（CA）的阈剂量，32 mg·kg\(^{-1}\) GBE50 iv 能够提高乌头碱诱发 VF, VT 的阈剂量（P<0.05, P<0.01）。银杏酮酯可以明显抑制哇巴因、高钙诱发的延迟性除极（DAD）和触发活动（TA），并呈一定浓度依赖性。GBE50 高、中、低各剂量组的 DAD 潜伏期的延长、DAD 的幅值和时程及 DAD 下方的面积与对照组相比均存在明显差异（P<0.01）；TA 发生率与对照组相比明显减少。结论：银杏酮酯可抑制 Aco、Oua 造成的大鼠 VT, VF, CA 的诱发剂量，且作用呈一定浓度依赖性。银杏酮酯能延长了 DAD 的潜伏期，缩短了 DAD 的时程，减少了 DAD 的幅值，抑制了 TA 的发生，表明了银杏酮酯有抗心律失常作用，这一发现与控制心律失常时异常的电活动过程有关。

【关键词】银杏酮酯；心律失常；迟后除极；触发活动

一、材料与方法

1.1 材料

1.1.1 动物 清洁级雄性 SD 大鼠，体重（270±30）g；雄性豚鼠，体重（230±20）g，上海中医药大学实验动物中心提供。

1.1.2 溶液与试剂 含 2%丙二醇（PF）生理盐水溶液；银杏酮酯母液：每 5 mg 银杏酮酯溶解于 1 mL 2%丙二醇（PF）溶液中备用，GBE50 由杏林药业提供（批号 050901）；乌头碱（aconitine，Fluka 公司，批号 402350/1）用生理盐水溶解，配制成 50 mg·L\(^{-1}\)的母液备用，实验中体积稀释至 3 倍使用；哇巴因（ouabain，Sigma 公司，批号 057K1625）用生理盐水溶解，配制成 1 g·L\(^{-1}\)的溶液；奎尼丁（Sigma 公司，批号 108F0776）用生理盐水溶解，配制成 1.5625 g·L\(^{-1}\)的溶液；盐酸地尔硫卓（日本田边制药，批号 0602002）用生理盐水溶解，配制成 234.375 mg·L\(^{-1}\)的溶液。

1.1.3 仪器 RM6240C 生物信号采集系统（成都仪器厂）；ZCZ-50 自动抽注机（浙江医科大学医学仪器实验厂）；SWF-IW 微电极放大器（成都仪器厂）；PE-21 微电极拉制仪；PF5-1 微推进器（日本 NARISHIGE 公司）。
1.2 方法

1.2.1 银杏酮酯预防给药抗乌头碱诱发心律失常试验 麻醉大鼠用 20% 乌拉坦按 5 mL·kg⁻¹腹腔注射，仰卧固定，颈静脉插管备用。对照组经颈静脉注射含 2% 丙二醇（PG）生理盐水溶液 (6.4 mL·kg⁻¹); 奎尼丁组经颈静脉注射奎尼丁溶液 0.01 mg·g⁻¹; GBE50 组注射不同剂量的 GBE50 液 (8, 16, 32 mg·kg⁻¹)。注射量均为 6.4 mL·kg⁻¹, 2 min 内注射完，稳定 10 min 后由颈静脉通过自动抽注机恒速注入乌头碱溶液 (16.67 mg·L⁻¹·min⁻¹)，通过 RM6240C 生物信号采集系统密切观察并记录 II 导联心电图，并准确计算诱发异常心电 (室早、室速、室颤、停博) 的乌头碱用药剂量 [4]。

1.2.2 银杏酮酯预防给药抗哇巴因诱发心律失常试验 麻醉大鼠用 20% 乌拉坦按 5 mL·kg⁻¹腹腔注射，仰卧固定，颈静脉插管备用。对照组经颈静脉注射含 2% 丙二醇（PG）生理盐水溶液 (6.4 mL·kg⁻¹); 盐酸地尔硫卓组经颈静脉注射盐酸地尔硫卓溶液 0.001 5 mg·g⁻¹; GBE50 组注射不同剂量的 GBE50 液 (8, 16, 32 mg·kg⁻¹)。注射量均为 6.4 mL·kg⁻¹, 2 min 内注射完，稳定 10 min 后由颈静脉通过自动抽注机恒速注入哇巴因溶液 (1 000 mg·L⁻¹·min⁻¹)，通过 RM6240C 生物信号采集系统密切观察并记录 II 导联心电图，并准确计算诱发异常心电 (室早、室速、室颤、停博) 的哇巴因用药剂量 [5]。

1.2.3 银杏酮酯对哇巴因和高钙诱导的迟后除极 (DAD)、触发活动 (TA) 的影响 将豚鼠去头后开胸，迅速取出心脏置于 37 ℃ 95% O₂ 和 5% CO₂ 饱和台氏液中，解剖分离出右侧心室乳头肌用 0 号不锈钢针固定于恒温 [(36 ± 0.5) ℃]，恒流 (4 mL·min⁻¹) 的灌流槽中央底部。以铂金丝电极作细胞外刺激。用 RM6240C 型生理实验系统输出脉冲电压刺激，刺激波宽 1 ms, 强度为阈值的 1.5 ~ 2 倍，频率为 1.67 Hz (BCL = 600 ms)。以乏极化银丝作为细胞外参考电极，记录电极为玻璃毛细管（直径 1.5 mm, 有芯，型号 GC17, 中国科学院上海生理所产品）经微电极拉制仪拉制而成，拉制好的微电极，其内充以 3 mol·L⁻¹ KCl 的电极内液，电极电阻为 10 ~ 20 MΩ, 并以铂金丝电极引导, 采用标准微电极技术 [6], 用微推进器将玻璃微电极插入已分离的右室心乳肌心引出跨膜电位，信号经微电极放大器放大，由 RM6240C 信号处理系统显示，记录、处理、分析。

乳头肌于正常台氏液中持续灌流 2 ~ 4 h, 稳定后记录动作电位, 待波形稳定 30 min 后, 改用含有哇巴因的高钙台氏液灌流标本 30 min, 观察 DAD 及 TA 出现的时间及各指标的变化，并以正常台氏液洗回以验证相应诱发的 DAD 和 TA 的重复性，以此作为对照组；维拉帕米组、GBE50 高、中、低剂量组；处理同上，待波形稳定 30 min 后，分别改用含有维拉帕米（阳性对照药）以及不同浓度 GBE50 的哇巴因, 高钙台氏液灌流标本 30 ~ 50 min, 分别观察、记录 DAD 及 TA 出现的时间及各项指标的变化，同样以正常台氏液洗回但以验证相应诱发的 DAD 和 TA 的重复性。

1.3 数据的统计学处理

所有数据用 x ± s 表示，实验计数资料均用单因素方差分析及 t 检验进行统计学分析，计量资料用精确概率法进行统计分析。资料用 RM6240C 信号处理软件、微软 Excel 2003 及 SPSS11.0 软件进行原始图样的采集、数据处理、分析及绘图。

2 结果

2.1 银杏酮酯预防给药对乌头碱所致心律失常的影响

对照组大鼠经颈外静脉给乌头碱平均剂量为 23.86 μg·kg⁻¹时出现室性早搏 (VP), 剂量达 27.21 μg·kg⁻¹时发生室速 (VT), 剂量达 34.71 μg·kg⁻¹时诱发室颤 (VF), 当剂量增加至 43.40 μg·kg⁻¹时则导致心跳停搏 (CA)。奎尼丁组 (Quin) 则使乌头碱诱发的室早、室速、室颤、停博剂量分别提高至 29.55, 34.52, 39.15, 48.68 μg·kg⁻¹, 诱发的室早、室速剂量与对照组比较具有显著性差异 (P < 0.05)。8 mg·kg⁻¹ GBE50 使乌头碱诱发室速剂量提高至 32.62 μg·kg⁻¹; 16 mg·kg⁻¹ GBE50 使乌头碱诱发的室颤、停博剂量分别提高至 48.62, 57.43 μg·kg⁻¹; 32 mg·kg⁻¹ GBE50 使乌头碱诱发的室早、室速剂量分别提高至 28.06, 31.30 μg·kg⁻¹, 上述数值和对照组比较有显著的升高并具有显著性差异 (P < 0.05 或 P < 0.01, 表 1)。结果表明 GBE50 具有抗乌头碱所致心律失常的作用。

2.2 银杏酮酯预防给药对哇巴因所致心律失常的影响
表 1 GBE50 对乌头碱心律失常的影响（x ± s，n = 12）

<table>
<thead>
<tr>
<th>组别</th>
<th>乌头碱的量 /mg</th>
<th>VP</th>
<th>VT</th>
<th>VF</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>23.86 ± 4.78</td>
<td>27.21 ± 5.72</td>
<td>34.71 ± 7.80</td>
<td>43.40 ± 10.13</td>
<td></td>
</tr>
<tr>
<td>青霉素</td>
<td>29.55 ± 4.50</td>
<td>34.52 ± 4.10, 3</td>
<td>39.15 ± 5.02</td>
<td>48.68 ± 6.62</td>
<td></td>
</tr>
<tr>
<td>GBE50</td>
<td>26.69 ± 6.09</td>
<td>32.62 ± 5.31</td>
<td>40.11 ± 7.03</td>
<td>51.29 ± 7.96</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>25.79 ± 5.13</td>
<td>30.48 ± 4.19</td>
<td>48.62 ± 16.25</td>
<td>57.43 ± 18.23</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>28.06 ± 3.32</td>
<td>31.30 ± 2.77</td>
<td>36.94 ± 7.14</td>
<td>48.75 ± 8.67</td>
<td></td>
</tr>
</tbody>
</table>

注：与对照组比较1 P < 0.05, 2 P < 0.01; 与 GBE50(16 mg ·kg⁻¹) 组比较3 P < 0.05, 4 P < 0.01.

2.3 银杏酮酯对哇巴因、高钙诱发的延迟后除极 (DAD) 和触发活动 (TA) 的影响

应用标准微电极技术在台氏液中记录到豚鼠心室肌束动作电位 (AP), 稳定 30 min, 改用含有哇巴因 (2 μmol ·L⁻¹) 的高钙 (CaCl₂ 5.4 mmol ·L⁻¹) 台氏液灌流标本, 经 12.37 min 左右开始出现 DAD, 连续灌流 30 min 可以诱发心肌产生波形典型的重构性好的 DAD, 并可以观察到连续性的或非连续性的 TA, 其发生率为 87.5%。同时动作电位波形开始明显改变, 表现为 RP 除极, APA 减小, APD 缩短, 平台期消失。

实验结果表明 GBE50 可以明显抑制哇巴因、高钙诱发的 DAD 和 TA, 并呈一定的浓度依赖性 (表 3，图 1)。

表 3 GBE50 对哇巴因、高钙诱发的豚鼠心室肌延迟后除极 (DAD) 和触发活动 (TA) 的影响（x ± s）

<table>
<thead>
<tr>
<th>组别</th>
<th>测量 /mg ·L⁻¹</th>
<th>n</th>
<th>潜伏期 /ms</th>
<th>脉冲时程 /ms</th>
<th>面积 /mV ·ms</th>
<th>TA 发生率 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>哇巴因</td>
<td>12.37 ± 2.26</td>
<td>10</td>
<td>13.25 ± 2.38</td>
<td>191.38 ± 53.62</td>
<td>978.45 ± 293.27</td>
<td>87.5</td>
</tr>
<tr>
<td>GBE50</td>
<td>12.50 ± 2.43</td>
<td>20</td>
<td>10.41 ± 3.06</td>
<td>128.33 ± 18.91</td>
<td>581.81 ± 153.47</td>
<td>33.33</td>
</tr>
<tr>
<td>14.33 ± 1.03</td>
<td>8.92 ± 2.68</td>
<td>103.33 ± 20.64</td>
<td>461.32 ± 147.32</td>
<td>33.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.00 ± 4.00</td>
<td>4.04 ± 1.44</td>
<td>57.00 ± 18.62</td>
<td>110.11 ± 27.72</td>
<td>16.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.33 ± 7.92</td>
<td>2.93 ± 0.79</td>
<td>64.33 ± 8.14</td>
<td>99.15 ± 25.62</td>
<td>33.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：哇巴因测量单位为 μmol ·L⁻¹; 与哇巴因组比较1 P < 0.05, 2 P < 0.01; 与 GBE50(2 mg ·L⁻¹) 组比较3 P < 0.01; 与 GBE50(10 mg ·L⁻¹) 组比较4 P < 0.01, 5 P < 0.05。
活动分为两大类：一类是早期后除极，另一类是延迟后除极。延迟后除极 DAD 是在心肌动作电位完全复极化后发生的跨膜电位的震荡[11]。跨膜电位震荡达到一定阈值后产生自发反应，被称为触发活动（triggered activity, TA）。目前普遍认为 DAD 诱发的 TA 可能是某些临床心律失常发生的重要机制[12]。

在离体组织上，DAD 和 DAD 诱发的 TA 常常在细胞内 Ca^{2+} 浓度明显提高或细胞内钙超载的情况下出现。哇巴因的使用和细胞外高钙最终引起细胞内高钙，就可以激活，而使更多的 Ca^{2+} 离子从肌浆网中释放出来，最终触发 DAD[13]。从 DAD 发生的离子机制来讲，DAD 是被 I_{ca} 即短时内向离子流诱导产生的。如果应用药物抑制 I_{ca} 就可以抑制 DAD 的发生[14]。I_{ca} 的组成包括一种非选择性阳离子流和一种生电性 Na-Ca 交换介导的离子流[15,16]。二者都是由细胞于 Ca^{2+} 离子超载的肌浆网中释放的。

在实验中观察到银杏酮酯可以减少 DAD 的幅度和持续时间以及 TA 的发生率。银杏酮酯对 DAD 和 TA 的这种抑制作用可能与通过抑制细胞 Ca^{2+} 离子通道或抑制 Ca^{2+} 离子从肌浆网中释放出来而减轻细胞内钙超载有关。由此可以推断，银杏酮酯可能是通过对 DAD 和 TA 的这种抑制作用产生抗心律失常的效应。笔者也曾经报道银杏苦内酯 A B 可降低 DAD 诱发率和延长诱发所需时间，故银杏酮酯对 DAD 和 TA 的抑制异常电活动作用可能与银杏叶中某些活性成分有关[17]。

临床前研究证实银杏酮酯可用于防治多种心脑血管疾病，如中风、冠心病、心绞痛、高脂血症等。银杏酮酯有望成为疗效较好、多重疗效、且毒副作用小的抗心律失常新药。

参考文献
[6] McGuire M A, de Bakker. Atrioventricular junction tissue. Discrepancy between histological and electrophysiological character-
Effect of GBE50 on experimental arrhythmias

WANG Xingyu, ZHANG Zhixiong*, LIU Aihua

(Date of Physical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)

[Abstract] Objective: The action and mechanism of ginkgo leaf extract (GBE 50) in fighting arrhythmia were studies. Method: The animal model of arrhythmia was established by intravenous drip of aconitine and ouabain, and the standard microelectrode technique was used. Result: In Ou model, threshold doses of ouahain induced VP, VT, VF, CA were observed. GBE50 significantly increased threshold doses of ouabain. In Aco model, threshold doses of Aco induced VP, VT, VF, CA were observed, GBE50 significantly increased threshold doses of Aco. Effects of GBE50 on delayed afterdepolarization and triggered activity induced by ouabain in guinea pig papillary muscles DADs and TA were markedly suppressed by GBE50. The amplitude and duration of DADs were reduced by GBE50 (50 mg·L⁻¹) from (13.25 ± 2.38) mV and (198.38 ± 53.62) ms to (4.04 ± 1.44) mV and (57.00 ± 18.62) ms, respectively, and the induced time of DADs was prolonged from (12.37 ± 2.26) to (23.00 ± 4.00) min. TA was reduced from 87.5% to 16.67% (P < 0.05, P < 0.01). GBE50 (2, 10 mmol · L⁻¹) had significant therapeutic effects on DADs. The amplitude and duration of DADs were reduced to (10.41 ± 3.06) mV, (8.92 ± 2.68) mV and (128.33 ± 18.91) ms, 103.33 20.64 ms (P < 0.05, P < 0.01 vs control). Conclusion: GBE50 can fight arrhythmia following aconitine and ouabain. GBE50 has inhibitory effects on DADs and TA induced by ouabain and high Ca²⁺ in guinea pig papillary muscles.

[Key words] GBE50; arrhythmia; DADs; TA

doi: 10.4268/cjcm20100218