刘寄奴黄酮类成分研究
温晶，史海明，刘艳芳，翁珂，周雨虹，陈玉平，屠鹏飞*（北京大学药学院天然药物及仿生药物国家重点实验室，北京 100191）

【摘要】 目的：研究刘寄奴 Artemisia anoma la 全草的化学成分。方法：柱色谱及高效液相色谱法分离其成分，波谱法鉴定其结构。结果：分离得到 11 个已知黄酮类化合物及 2 个黄酮木脂素类化合物，分别鉴定为山奈酚 (1)、芸香素 (2)、异泽兰黄素 (3)、5,7,4'-三羟基-6,3',5'-三甲氧基黄酮 (4)、芒柄花素 (5)、三七素 (6)、棕皮素 (7)、檞皮素 (8)、毛蕊异黄酮 (9)、芹菜素 7-O-葡萄糖苷 (10)、山奈酚-3-O-芸香糖苷 (11)、tricin 4'-O-(erythro-β-guaiacylglyceryl) ether (12) 和 tricin 4'-O-(threo-β-guaiacylglyceryl) ether (13)。结论：化合物 12，13 为首次从菊科中分离得到；化合物 5，9 为首次从菊属中分离得到；化合物 4，7，11 为首次从该植物中分离得到。

【关键词】 刘寄奴；菊科；黄酮；化学成分

刘寄奴为菊科植物寄生 Artemisia anomala S. Moore 的干燥地上部分，收载于《中国药典》2005 年版一部附录中。《中国植物志》记载寄生为菊科 Compositae 香黄菊族 Tri. Anthemideae 菊亚族 Chrysantheminae 花属 Artemisia L. 植物，我国有 1 种，1 变种[1]。该中药具有敛疮消肿、破瘀通经等功效[2]。有关寄生的化学成分研究较少，文献报道从中分离得到了主要类型包括倍半萜内酯类、黄酮类和香豆素类等成分[12]。作者对刘寄奴的化学成分进行了较为系统的研究。本文报道从该植物中分离鉴定的 13 个化合物，其中 2 个化合物为首次从菊科中分离得到，1 个化合物首次从菊属中分离得到，3 个化合物首次从该植物中得到。

1 材料

X-4 型显微熔点测定仪 (温度计未校正)；AVATER-360 型红外光谱仪；Jeol JNM-A300 型核磁共振仪；QSTAR 型 ESI 质谱仪；Waters 600 半制备型高效液相色谱仪。色谱用硅胶均为青岛海洋化工厂产品；Sephadex LH-20（Pharmacia 公司）；高效薄层板（Merk 公司）。提取、分离用溶剂均为分析纯，HPLC 用试剂均为色谱纯。刘寄奴药材于 2007 年 3 月采购于浙江中医药大学饮片厂，原植物经北京大

学药学院天然药物学系屠鹏飞教授鉴定为菊科寄生植物寄生 Artemisia anoma la 的干燥地上部分，标本（No. 20070315）保存于北京大学中医药现代研究中心标本库。2 提取和分离

刘寄奴药材 15 kg，粉碎后用 95% EtOH 90 L 于 60 ℃加热提取 1.5 h，共提取 3 次，过滤，合并 3 次滤液，减压回收溶剂，得浸膏 250 g。将浸膏悬浮于水中，分别用石油醚、乙酸乙酯和正丁醇萃取，回收溶剂得石油醚萃取物 38 g，乙酸乙酯萃取物 110 g，正丁醇萃取物 40 g。95% EtOH 提取后的药渣继续用 50% EtOH 于 60 ℃加热提取，共提取 3 次，每次 1.5 h，过滤，合并 3 次滤液，减压回收溶剂，得浸膏 500 g。将浸膏悬浮于水中，分别用石油醚、乙酸乙酯和正丁醇萃取，回收溶剂得石油醚萃取物 160 g，乙酸乙酯萃取物 100 g，正丁醇萃取物 165 g。95% EtOH 提取物经乙酸乙酯萃取部分 110 g，经硅胶 (100～200 目) 柱色谱纯分，氯仿-甲醇 (100：0～1：1) 梯度洗脱得到 6 个部分，第 3 部分经反复硅胶柱色谱及 Sephadex LH-20 纯化得到化合物 3 (23.4 mg) 和 4 (18.4 mg)；第 4 部分经 Sephadex LH-20 纯化及重结晶得到化合物 5 (6.4 mg)；第 5 部分经 Sephadex LH-20 和 HPLC 纯化得到化合物 6 (27.0 mg)，7 (2.0 mg)，8 (14.6 mg)，9 (25.6 mg)，12 (15.2 mg)，13 (11.4 mg)。

50% EtOH 提取物经乙酸乙酯萃取部分 100 g，经硅胶 (100～200 目) 柱色谱纯分，氯仿-甲醇 (100：
3 结构鉴定

化合物1 淡黄色粉末，mp 264 ~ 265 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 286 [M]^+。NMR(DMSO-d$_6$, 500 MHz)数据与文献[8]报道的山奈酚数据基本一致，故鉴定为山奈酚（kaempferol）。

化合物2 黄色无定形粉末，mp 269 ~ 272 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 330 [M]^+。1H-NMR(DMSO-d$_6$, 500 MHz) δ: 7.32(2H, s, H-2', 6'), 6.97(1H, s, H-3), 6.55(1H, d, J = 2.0 Hz, H-8), 6.19(1H, d, J = 2.0 Hz, H-6), 3.88(6H, s, 3', 5'-OCH$_3$)。以上数据与文献[9]报道山奈酚数据一致，故化合物2 为山奈酚（tricin）。

化合物3 淡黄色粉末，mp 234 ~ 235 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 344 [M]^+。1H-NMR (DMSO-d$_6$, 500 MHz) δ: 13.02(1H, s, 5-OH), 10.67(1H, s, 7-OH), 7.64(1H, d, J = 2.0, 8.5 Hz, H-6'), 7.53(1H, d, J = 2.0 Hz, H-2'), 7.09(1H, d, J = 8.5 Hz, H-5'), 6.93(1H, d, J = 1.0 Hz, H-8), 6.61(1H, d, J = 1.0 Hz, H-3), 3.87(3H, s, OCH$_3$), 3.84(3H, s, OCH$_3$), 3.75(3H, s, OCH$_3$)；13C-NMR(DMSO-d$_6$, 125 MHz) δ: 181.6(C-4), 162.8(C-2), 156.7(C-7), 152.2(C-5), 151.9(C-9), 151.6(C-4'), 148.5(C-3'), 130.8(C-6), 122.4(C-1'), 119.5(C-6'), 111.1(C-5'), 108.9(C-2'), 103.6(C-10), 102.8(C-3), 93.8(C-8), 59.4(OCH$_3$), 55.3(OCH$_3$), 55.2(OCH$_3$)。波谱数据与文献[3,10]报道的异泽兰黄素数据基本一致，故鉴定为异泽兰黄素（eupatilin）。

化合物4 淡黄色粉末，mp 239 ~ 243 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 360 [M]^+。1H-NMR(CD$_3$COCD$_3$, 500 MHz) δ: 13.22(1H, s, 5-OH), 7.38(2H, s, H-2', 6'), 6.74(1H, s, H-3), 6.64(1H, s, H-8), 3.96(6H, s, OCH$_3$), 3.86(3H, s, OCH$_3$)。其NMR 数据与文献[11]报道的数据基本一致，故鉴定为5,7,4'-三羟基-6,3',5'-三甲氧基黄酮。

化合物5 无色粉末，mp 260 ~ 261 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 268 [M]^+。NMR(CD$_3$COCD$_3$, 500 MHz)数据与文献[12]报道的基本一致，故鉴定为芒柄花素（formononetin）。

化合物6 黄色粉末状结晶（氯仿-甲醇），mp 341 ~ 342 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 270[M]^+。1H-NMR(DMSO-d$_6$, 300 MHz)数据与文献[13]报道一致，确定其结构为苦木素（apigenin）。

化合物7 黄色粉末，mp 243 ~ 244 °C，三氯化铁和盐酸镁粉反应阳性。ESI-MS m/z 273 [M + H]^+。1H-NMR(DMSO-d$_6$, 500 MHz)数据与文献[14]报道一致，确定其结构为方蛤素（naringenin）。

化合物8 黄色无定形粉末，溶于甲醇，mp 314 ~ 315 °C，三氯化铁和盐酸镁粉反应阳性。ESI-MS m/z 303 [M + H]^+。ESI-MS m/z 302 [M]^+。(64.0), 153[A$_1$ + H]^+ (16.0), 137[B$_2$] (27.1)。1H-NMR(DMSO-d$_6$, 300 MHz)数据与文献[15]报道的一致，故鉴定为葡萄素（quercetin）。

化合物9 黄色针状结晶，mp 245 ~ 247 °C，三氯化铁和盐酸镁粉反应阳性。EI-MS m/z 284 [M]^+。1H-NMR(CD$_3$OD, 500 MHz) δ: 8.06(1H, s, H-2), 7.99(1H, d, J = 9.0 Hz, H-5), 6.87(1H, dd, J = 2.0, 9.0 Hz, H-6), 6.78(1H, d, J = 2.0 Hz, H-8), 6.98(1H, d, J = 2.0 Hz, H-2'), 6.94(1H, dd, J = 2.0, 8.5 Hz, H-6'), 6.90(1H, d, J = 8.5 Hz, H-5'), 3.82(3H, s, 4'-OCH$_3$)。其NMR 数据与文献[16]报道的数据一致，故鉴定为木糖苷黄酮（calycosin）。

化合物10 淡黄色粉末，mp 233 ~ 234 °C，盐酸-镁粉反应呈红色，Molish 反应阳性。ESI-MS m/z 455 [M + Na]^+。1H-NMR(DMSO-d$_6$, 500 MHz) δ: 7.95(2H, d, J = 9.0 Hz, H-2', 6'), 6.94(2H, d, J = 9.0 Hz, H-3', 5'), 6.87(1H, s, H-3), 6.83(1H, d, J = 2.0 Hz, H-8), 6.43(1H, d, J = 2.0 Hz, H-6), 5.06(1H, d, J = 7.0 Hz, H-1'), 3.20 ~ 4.80(5H, H-2' ~ 6'）。13C-NMR(DMSO-d$_6$, 125 MHz) δ: 181.9(C-4), 164.2(C-2), 164.2(C-7), 162.9(C-9), 161.2(C-4'), 156.9(C-5), 128.6(C-2', 6'), 120.9(C-1'), 115.9(C-5'), 110.5(C-9'), 103.1(C-3), 99.4(C-6), 94.8(C-8), 99.9(C-1'), 77.1(C-3'), 76.4(C-5'), 73.1(C-2'), 69.5(C-4'), 60.6(C-6')。以上NMR 数据与文献[17]报道的一致，确定其结构为芹菜素-7-O-葡萄糖苷。
化合物 11 黄色粉末，mp 223～225 °C，盐酸-镁粉反应显红色，Molish 反应阳性。ESI-MS m/z 595 [M + H]+。H-NMR (DMSO-d6，500 MHz) δ：12.55 (1H, s, 5-0H)，7.97 (2H, d, J = 8.5 Hz, H-2’,6’)。6.86 (2H, d, J = 8.5 Hz, H-3’,5’)。6.42 (1H, d, J = 2.0 Hz, H-8)。6.19 (1H, d, J = 2.0 Hz, H-6)，5.29 (1H, d, J = 8.0 Hz, H-1”)。0.96 (3H, d, J = 6.0 Hz, H-6”)。13-C-NMR (DMSO-d6，125 MHz) δ：176.8 (C-4)，163.6 (C-5)，160.6 (C-5)，159.3 (C-4”)。156.3 (C-9)，155.9 (C-2)，132.7 (C-3)，130.3 (C-2’,6’)。120.4 (C-1’)，114.6 (C-3’,5’)。103.5 (C-10)，100.8 (C-1”)。98.2 (C-6)，93.2 (C-8)，75.8 (C-5”)，75.2 (C-5”)。73.6 (C-2”)。71.3 (C-4”)。70.1 (C-4”)。69.8 (C-3”)。69.4 (C-2”)。67.7 (C-5”)。66.4 (C-6”)。7.2 (C-6”)。以上 NMR 数据与文献 [19] 报道的一致，因此，鉴定该化合物为 tricin 4’-O-(threo-β-guaiaeryl) ether。

化合物 12 淡黄色无定型粉末。ESI-MS m/z 527 [M + H]+。H-NMR (DMSO-d6，500 MHz) δ：7.31 (2H, s, H-2’,6’)。7.05 (1H, s, H-3)，6.93 (1H, d, J = 1.5 Hz, H-2”)。6.75 (1H, dd, J = 2.0, 8.0 Hz, H-6”)。6.70 (1H, d, J = 8.0 Hz, H-5”)。6.58 (1H, d, J = 2.0 Hz, H-8)。6.21 (1H, d, J = 1.5 Hz, H-6)，4.80 (1H, t, J = 5.0 Hz, H-7”)。4.36 (1H, q, J = 3.5，5.0, 5.5 Hz, H-8”)。3.88 (6H, s, 3’，5’-OCH3)。3.75 (3H, s, 3’-OCH3)。3.72，3.50 (2H, m, H-9”)。13-C-NMR (DMSO-d6，125 MHz) δ：181.9 (C-4)，164.3 (C-7)。163.1 (C-2)，161.4 (C-5)，157.4 (C-9)，152.9 (C-3’，5’)，147.0 (C-3”)，145.4 (C-4”)，139.5 (C-4”)。133.2 (C-1’)，125.2 (C-1”)。119.4 (C-6”)。114.7 (C-5”)。111.0 (C-2”)。104.8 (C-3”)。104.3 (C-2’，6”)。103.8 (C-10)，98.9 (C-6)，94.3 (C-8)，86.5 (C-8”)。72.2 (C-7”)。60.1 (C-9”)。56.4 (3’，5’-OCH3)，55.5 (3’-OCH3)。以上数据与文献 [19] 报道的一致，因此，鉴定该化合物为 tricin 4’-O-(erythro-β-guaiaeryl) ether。

化合物 13 淡黄色无定型粉末。ESI-MS m/z 527 [M + H]+。H-NMR (DMSO-d6，500 MHz) δ：7.31 (2H, s, H-2’，6’)。7.04 (1H, s, H-3)，6.96 (1H, d, J = 1.5 Hz, H-2”)。6.78 (1H, dd, J = 2.0, 8.0 Hz, H-6”)。6.68 (1H, d, J = 8.0 Hz, H-5”)。6.57 (1H, d, J = 2.0 Hz, H-8)。6.21 (1H, d, J = 2.0 Hz, H-6)，4.83 (1H, t, J = 5.0 Hz, H-7”)。4.35 (1H, t, J = 5.5，6.0 Hz, H-8”)。3.85 (6H, s，3’，5’-OCH3)。3.63 (3H, s，3’-OCH3)。3.75，3.50 (2H, m, H-9”)。C-NMR (DMSO-d6，125 MHz) δ：181.3 (C-4)，163.7 (C-7)，162.5 (C-2)，160.9 (C-5)，156.9 (C-9)，152.4 (C-3’，5’)。146.0 (C-3”)，144.9 (C-4”)。139.5 (C-4”)。132.5 (C-1”)。124.8 (C-1’)。118.7 (C-6”)。114.2 (C-5”)。110.7 (C-2”)。104.3 (C-3)。103.9 (C-2’，6”)。103.3 (C-10)，98.4 (C-6)，93.8 (C-8)，86.4 (C-8”)。71.2 (C-7”)。60.0 (C-9”)。55.9 (3’，5’-OCH3)。55.1 (3’-OCH3)。以上数据与文献 [19] 报道的一致，因此，鉴定该化合物为 tricin 4’-O-(threo-β-guaiaeryl) ether。

参考文献
[16] 杨光忠, 陈玉, 王晓玲. 毛蕊异黄酮2D-NMR 的研究[J]. 中
Flavonoids from Artemisia anomala

WEN Jing, SHI Haiming, LIU Yanfang, ZAN Ke, ZHOU Yuhong, CHEN Yuping, TU Pengfei*
(State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
Health Science Center, Beijing 100083, China)

[Abstract] Objective: To study the constituents of Artemisia anomala. Method: The constituents were isolated by chromatographic methods, their structures were elucidated by spectroscopic evidences. Result: Eleven flavonoids and two flavanolignans were purified and their structures were identified. Conclusion: Compound 12 and 13 were isolated from the Compositae family for the first time. Compound 5 and 9 were firstly isolated from the genus Artemisia. Compounds 4, 7, 11 were isolated from A. anomala for the first time.

[Key words] Artemisia anomala; Compositae; Artemisia; flavonoid; chemical constituents

doi: 10.4268/cjcm20101413