黄连改善胰岛素抵抗药效物质基础研究

李佳川，孟宪丽*，范亦建，赖先荣，张艺，曾勇
（成都中医药大学，四川 成都 611137）

【摘要】 目的：从细胞途径多方面观察黄连药材、部位及其成分等对3T3-L1前脂肪细胞诱导分化及脂肪细胞胰岛素抵抗的影响，探索黄连改善胰岛素抵抗的药效物质基础。方法：培养3T3-L1前脂肪细胞，采用地塞米松，3-异丁基-1-甲基黄嘌呤和胰岛素共同诱导3T3-L1前脂肪细胞分化为脂肪细胞，并建立胰岛素抵抗模型。依据黄连传统用药经验，观察黄连“药材-部位-生物碱成分”对脂肪细胞分化的影响，对胰岛素抵抗模型细胞培养液中葡萄糖消耗的影响。结果：除生物碱部位在6.0 μg·L⁻¹具有明显促进分化作用外，其余各组无论黄连水提物、不同提取部位还是不同生物碱成分均未明显抑制3T3-L1前脂肪细胞的分化，其中单体成分盐酸黄连碱在浓度16.5 μmol·L⁻¹时抑制作用最为明显；同时，各组均能降低培养液中葡萄糖的含量，提高葡萄糖的利用率，改善胰岛素抵抗，作用与马来酸罗格列酮相似，其中单体成分盐酸盐酸碱在浓度10.5 μmol·L⁻¹时改善作用明显优于其余各成分。结论：黄连具有明显改善胰岛素抵抗，抑制前脂肪细胞分化的作用，可能在是其组成成分在不同作用的表示；同时其抑制分化作用也提示黄连在增加细胞对葡萄糖摄取的同时不会引起脂肪的聚集而造成体重增加，这对防治与胰岛素抵抗相关的代谢综合征或并发症具有临床意义。

【关键词】 黄连；3T3-L1前脂肪细胞；药效物质基础；胰岛素抵抗
2 方法
2.1 3T3-L1 前脂肪细胞的培养和诱导分化 将 3T3-L1 前脂肪细胞悬液按 5 × 10⁵ 个/mL 接种到 48 孔培养板，于含质量分数为 10% 的小牛血清 DMEM 高糖培养基中，在 37 ℃, 5% CO₂, 饱和湿度条件下培养，2 d 换液 1 次。待细胞融合 2 d 达到接触抑制后，用含 1 μmol · L⁻¹ 的 DEX, 0.5 mmol · L⁻¹ IBMX 及 5 mg · L⁻¹ 胰岛素的 DMEM 完全培养液诱导分化，48 h 后撤去 DEX 和 IBMX，用 10 mg · L⁻¹ 胰岛素再继续作用 48 h，换正常完全培养液培养 8～12 d，隔天换液，待 3T3-L1 细胞 90% 多呈脂肪细胞表型时用于试验。

2.2 药物对 3T3-L1 前脂肪细胞诱导分化的耳响（染红 O 法） 3T3-L1 前脂肪细胞达到接触抑制后，用含 1 μmol · L⁻¹ DEX, 0.5 mmol · L⁻¹ IBMX 及 5 mg · L⁻¹ 胰岛素的 DMEM 完全培养液诱导分化，方法同 2.1。同时分别加入不同浓度的受试药物干预，黄连水提物 (30, 6, 1, 2, 0.4 g · L⁻¹)，不同提取部位 (生物碱 8, 8, 8, 0, 08, 008 μg · L⁻¹) 与非生物碱 60, 6, 0, 06, 00 μg · L⁻¹)，以及盐酸小檗碱 (50, 5, 0, 5, 05 μmol · L⁻¹)，盐酸巴马汀 (12.5, 0, 125, 0, 012, 5 μmol · L⁻¹)，盐酸黄连碱 (16.5, 0, 165, 0, 166, 5 μmol · L⁻¹)，盐酸药用碱 (10.5, 1, 05, 0, 105, 0, 010, 5 μmol · L⁻¹)，盐酸表小檗碱 (4, 0, 4, 0, 04, 004 μmol · L⁻¹) 5 种生物碱单体成分，对照组加入等体积溶剂 PBS，阳性组加入罗格列酮 (20 μmol · L⁻¹)，每浓度组均设 6 个复孔，药物与分化培养液同步更换至分化结束。诱导分化结束后，吸去培养液，细胞经 PBS 清洗 3 次后，用 4% 的多聚甲醛溶液固定细胞 10 min，吸去固定液，PBS 清洗，加入染液染液室温染色 15 min。弃去染液，PBS 清洗 3 次除去多余染液；置显微镜下观察，拍片；加入异丙醇，抽提脂肪细胞中染液，O, 510 nm 测定 A，计算细胞分化相对变化率。

分化相对变化率 = (A - A₀) / A₀ ×100%

2.3 药物对 3T3-L1 前脂肪细胞胰岛素抵抗 (IR) 模型葡萄糖利用的影响 细胞分化完成后，除对照组加入正常培养基，其余组均加入 1 μmol · L⁻¹ 的地塞米松，1 μmol · L⁻¹ 的胰岛素进行脂肪细胞的胰岛素抵抗，作用 3 d。待脂肪细胞胰岛素抵抗成立后，换无酚红 DMEM 高糖培养基，分别加入不同浓度的受试药物干预 3 d，药物同 2.2，观察药物对胰岛素抵抗的改善，72 h 后取细胞培养上清液 505 nm 比色测定葡萄糖的含量，计算细胞葡萄糖利用相对变化率。

葡萄糖利用相对变化率 = (1 - A 实际值 / A 对照值) ×100%

3 结果
3.1 3T3-L1 前脂肪细胞分化前后形体学的变化与比较 未分化的 3T3-L1 前脂肪细胞呈梭形，胞浆中无脂滴存在，形态与成纤维细胞相似。前脂肪细胞在 IBMX, DEX 和 Ins 的共同作用下，逐渐诱导分化为成熟的脂肪细胞，胞浆内出现脂滴，并随着分化程度的加深而聚积增多。油红 O 为脂肪特征性染色剂，染色后胞浆中的脂滴呈红色。

3.2 药物对 3T3-L1 前脂肪细胞诱导分化的耳响 3T3-L1 前脂肪细胞在 IBMX, DEX, Ins 的共同作用下，逐渐诱导分化为成熟的脂肪细胞，油红 O 染色呈阳性。与对照组相比，非生物碱部位在 6.0 μg · L⁻¹ 剂量下具有明显促进分化作用外 (P < 0.01)，其余各组无论黄连水提物、不同提取部位还是不同生物碱成分均能明显或部分抑制 3T3-L1 前脂肪细胞的分化 (P＜0.05, 0.01)，这与罗格列酮作用相好，其中单体成分盐酸黄连碱的抑制作用最为明显，浓度在 16.5 μmol · L⁻¹ 时作用最优。见表 1～3。

表 1 黄连水提物对 3T3-L1 前脂肪细胞诱导分化的影响 (x ± s, n = 6)

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 /g · L⁻¹</th>
<th>A₅₃₀</th>
<th>分化相对变化率 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>－</td>
<td>0.257 ± 0.008</td>
<td>0.00</td>
</tr>
<tr>
<td>罗格列酮</td>
<td>20.0</td>
<td>0.330 ± 0.011</td>
<td>28.29</td>
</tr>
<tr>
<td>黄连水提物</td>
<td>30.0</td>
<td>0.211 ± 0.008</td>
<td>-17.90</td>
</tr>
<tr>
<td>6.0</td>
<td>0.187 ± 0.007</td>
<td>-27.24</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.202 ± 0.012</td>
<td>-24.40</td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>0.236 ± 0.010</td>
<td>-8.17</td>
<td></td>
</tr>
</tbody>
</table>

注：与对照组相比 P < 0.05, 0.01；P < 0.01；"+" 表示促进，"－" 表示抑制；罗格列酮剂量单位为 μmol · L⁻¹（表 2, 3 同）。
表2 黄连不同提取部位对3T3-L1前脂肪细胞诱导分化的（\(x \pm s, n = 6\)）

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 /(\mu g \cdot L^{-1})</th>
<th>(A_{510})</th>
<th>分化相对变化率 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>-</td>
<td>0.257 ± 0.008</td>
<td>0.00</td>
</tr>
<tr>
<td>罗格列酮</td>
<td>20.0</td>
<td>0.330 ± 0.011</td>
<td>28.29</td>
</tr>
<tr>
<td>总生物碱</td>
<td>8.0</td>
<td>0.195 ± 0.008</td>
<td>24.06</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.196 ± 0.009</td>
<td>23.82</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.215 ± 0.005</td>
<td>16.24</td>
</tr>
<tr>
<td></td>
<td>0.008</td>
<td>0.265 ± 0.005</td>
<td>2.92</td>
</tr>
<tr>
<td>非生物碱</td>
<td>60.0</td>
<td>0.257 ± 0.009</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.280 ± 0.008</td>
<td>8.85</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.233 ± 0.006</td>
<td>9.24</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.215 ± 0.007</td>
<td>-16.29</td>
</tr>
</tbody>
</table>

表3 黄连不同生物碱单体对3T3-L1前脂肪细胞诱导分化的（\(x \pm s, n = 6\)）

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 /(\mu g \cdot L^{-1})</th>
<th>(A_{510})</th>
<th>分化相对变化率 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>-</td>
<td>0.257 ± 0.008</td>
<td>0.00</td>
</tr>
<tr>
<td>罗格列酮</td>
<td>20.0</td>
<td>0.330 ± 0.011</td>
<td>28.29</td>
</tr>
<tr>
<td>盐酸小檗碱</td>
<td>50.0</td>
<td>0.203 ± 0.008</td>
<td>-21.15</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>0.207 ± 0.009</td>
<td>-19.45</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.233 ± 0.006</td>
<td>-9.43</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.263 ± 0.011</td>
<td>2.24</td>
</tr>
<tr>
<td>盐酸巴马汀</td>
<td>12.5</td>
<td>0.223 ± 0.007</td>
<td>-13.27</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>0.182 ± 0.007</td>
<td>-29.07</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>0.218 ± 0.006</td>
<td>-15.31</td>
</tr>
<tr>
<td></td>
<td>0.0125</td>
<td>0.222 ± 0.007</td>
<td>-13.66</td>
</tr>
<tr>
<td>盐酸黄连碱</td>
<td>16.5</td>
<td>0.174 ± 0.011</td>
<td>-32.43</td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td>0.194 ± 0.009</td>
<td>-24.5</td>
</tr>
<tr>
<td></td>
<td>0.165</td>
<td>0.186 ± 0.007</td>
<td>-27.81</td>
</tr>
<tr>
<td></td>
<td>0.0165</td>
<td>0.192 ± 0.007</td>
<td>-25.18</td>
</tr>
<tr>
<td>盐酸药根碱</td>
<td>10.5</td>
<td>0.215 ± 0.006</td>
<td>-16.53</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>0.223 ± 0.008</td>
<td>-13.32</td>
</tr>
<tr>
<td></td>
<td>0.105</td>
<td>0.230 ± 0.008</td>
<td>-10.55</td>
</tr>
<tr>
<td></td>
<td>0.0105</td>
<td>0.236 ± 0.008</td>
<td>-7.9</td>
</tr>
<tr>
<td>盐酸表小檗碱</td>
<td>4.0</td>
<td>0.217 ± 0.008</td>
<td>-15.61</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.221 ± 0.010</td>
<td>-13.9</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.203 ± 0.011</td>
<td>-21.0</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td>0.193 ± 0.008</td>
<td>-24.84</td>
</tr>
</tbody>
</table>

不同生物碱成分均能明显或部分降低培养液中葡萄糖的含量（\(P < 0.05 - 0.01\)），提高葡萄糖的利用率，改善胰岛素抵抗，作用与马来酸罗格列酮相似，其中单体及部分盐酸药根碱的改善作用明显优于其余各成分，浓度在 10.5 \(\mu mol \cdot L^{-1}\) 时作用最优。见表 4～6。

表4 黄连水提物对3T3-L1脂肪细胞葡萄糖利用的影响（\(x \pm s, n = 6\)）

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 /(g \cdot L^{-1})</th>
<th>葡萄糖剩余量 /(\mu mol \cdot L^{-1})</th>
<th>葡萄糖利用相对变化率 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>-</td>
<td>4.169 ± 0.502</td>
<td>59.44</td>
</tr>
<tr>
<td>模型</td>
<td>-</td>
<td>10.279 ± 0.406</td>
<td>0.00</td>
</tr>
<tr>
<td>罗格列酮</td>
<td>20.0</td>
<td>6.116 ± 0.507</td>
<td>40.50</td>
</tr>
<tr>
<td>黄连水提物</td>
<td>30.0</td>
<td>8.105 ± 0.680</td>
<td>21.15</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>7.490 ± 0.421</td>
<td>27.13</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>8.113 ± 0.588</td>
<td>21.07</td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>6.853 ± 0.548</td>
<td>33.33</td>
</tr>
</tbody>
</table>

注：与模型组相比，\(P < 0.05, ^2 P < 0.01\)；罗格列酮剂量单为 \(\mu mol \cdot L^{-1}\)（表 5，6 同）。

表5 黄连不同提取部位对3T3-L1脂肪细胞葡萄糖利用的影响（\(x \pm s, n = 6\)）

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 /(\mu g \cdot L^{-1})</th>
<th>葡萄糖剩余量 /(\mu mol \cdot L^{-1})</th>
<th>葡萄糖利用相对变化率 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>-</td>
<td>4.169 ± 0.502</td>
<td>59.44</td>
</tr>
<tr>
<td>模型</td>
<td>-</td>
<td>10.279 ± 0.406</td>
<td>0.00</td>
</tr>
<tr>
<td>罗格列酮</td>
<td>20.0</td>
<td>6.116 ± 0.507</td>
<td>40.50</td>
</tr>
<tr>
<td>总生物碱</td>
<td>8.0</td>
<td>9.797 ± 0.472</td>
<td>4.69</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>8.332 ± 0.708</td>
<td>18.94</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>9.698 ± 0.514</td>
<td>5.65</td>
</tr>
<tr>
<td></td>
<td>0.008</td>
<td>8.509 ± 1.183</td>
<td>17.22</td>
</tr>
<tr>
<td>非生物碱</td>
<td>60.0</td>
<td>9.507 ± 0.451</td>
<td>7.51</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>8.410 ± 0.352</td>
<td>18.18</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>10.406 ± 0.802</td>
<td>-1.24</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>9.528 ± 0.603</td>
<td>7.31</td>
</tr>
</tbody>
</table>

4 讨论

胰岛素抵抗是2型糖尿病发病的主要病机，在糖尿病的发生和发展中起着关键作用，同时脂肪组织是体内胰岛素作用的主要靶组织，大量证据表明肥胖与胰岛素抵抗有高度相关性，它是引发2型糖尿病、糖耐量异常、高血压、高脂血症及动脉粥样硬化等代谢性疾病的重要因素。因此，实验选用3T3-L1脂肪细胞胰岛素抵抗模型观察了黄连药材、部位及成分对脂肪细胞分化及胰岛素抵抗的改善作用。

本研究表明，无论黄连水提物，还是不同提取部位，不同生物碱成分均能明显或部分降低培养液中葡萄糖的含量、提高葡萄糖的利用率，作用与马来酸罗格列酮相似，说明黄连具有改善3T3-L1脂肪细胞胰岛素抵抗，增强脂肪细胞对葡萄糖摄取和利用的能力，从体外细胞水平上说明黄连具有改善胰岛素抵抗的作用。
Pharmacodynamic material basis of Rhizoma Coptidis on insulin resistance

LI Jiachuan, MENG Xianli,* FAN Xinjian, LAI Xianrong, ZHANG Yi, ZENG Yong
(Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China)

[Abstract] Objective: To observe the impact of Rhizoma Coptidis (drug-chemical extract parts-components) on 3T3-L1 pre-adipocytes differentiation and adipocytes insulin resistance, and reveal the pharmacodynamic material basis of Rhizoma Coptidis on insulin resistance. Method: 3T3-L1 pre-adipocytes were well cultured, and then induced to differentiate into fat cells by using dexamethasone, 3-isobutyl-1-methyl-xanthine and insulin together, and establish the insulin resistance model. Based on the experience of traditional medicine use, the adipocytes differentiation and the glucose consumption in the cell culture medium were observed independently. Result: Aqueous extract, different chemical extract fraction and different alkaloid extract from the herb showed inhibitory effects on 3T3-L1 pre-adipocytes differentiation, especially the compound coptisine significantly inhibited the differentiation in the concentration of 16.5 μmol·L⁻¹, but non-alkaloid extract from the herb promoted cell differentiation significantly in the concentration of 6.0 μmol·L⁻¹. Each treatment group, especially jatrorrhizine hydrochloride (in the concentration of 10.5 μmol·L⁻¹) significantly decreased the concentration of glucose in 3T3-L1 adipocytes culture, at the same time improved insulin resistance. These effects are similar to the role of rosiglitazone maleate. Conclusion: Rhizoma Coptidis significantly improved insulin resistance, prevented pre-adipocytes differentiation. Its efficacy may be the synergistic effect of various components. Meanwhile, its role in inhibiting differentiation of pre-adipocytes indicates that coptis to increasing glucose uptake dose not cause fat accumulation and weight increasing. This has some clinical significance in the insulin resistance and metabolic syndrome.

[Key words] Rhizoma Coptidis; 3T3-L1 adipocytes; pharmacodynamic material basis; insulin resistance
doi: 10.4268/cjcmn20101419