施用磷肥对菊花活性成分及清除自由基能力的影响

刘大伟1,2,3, 刘伟1, 朱端卫1*, 郭兰萍2, 金航3, 左智天3, 刘莉3

1. 华中农业大学 资源与环境学院, 湖北 武汉 430070;
 2. 中国中医科学院 中药研究所, 北京 100700;
 3. 云南省农业科学院 药用植物研究所, 云南 昆明 650231

【摘要】目的: 研究施用磷肥对菊花活性成分及清除自由基能力的影响, 旨在为制定菊花科学施肥的栽培措施提供理论依据。方法: 采用盆栽土壤培养试验, 在采收期进行采样测定, 分别测定药材总黄酮、绿原酸、可溶性糖、可溶性氨基酸和粗蛋白含量, 以及药材提取物对羟基、超氧阴离子及 DPPH 自由基的清除率。结果: 适量施用磷肥可以显著提高菊花药材产量, 产量增加幅度达 130%。适量施用磷肥还可显著提高菊花中总黄酮、绿原酸和可溶性糖的含量与累积量, 从而显著增强了菊花清除羟基、超氧阴离子及 DPPH 自由基的能力, 即抗氧化活性。而菊花中可溶性氨基酸含量和粗蛋白含量, 与施磷量呈正相关, 但以增加的施磷量的增加呈下降的趋势。磷肥 (P2O5) 施用量过高 (>0. 20 g·kg-1) 会导致菊花早熟, 从而降低菊花产量, 并导致菊花活性成分含量、累积量及其清除自由基的能力有不同程度的降低。另外, 菊花中总黄酮和绿原酸含量及菊花对 3 种自由基的清除率等指标之间, 分别呈显著正相关。结论: 在菊花种植生产上应重视施用磷肥, 综合比较菊花产量、活性成分含量与累积量及清除自由基能力等因素, 建议菊花全生育期内施磷肥用量在 0.26～0.28 g·kg-1 为适宜。

【关键词】菊花; 磷肥; 黄酮; 绿原酸; 抗氧化活性

菊花为菊科植物菊 Chrysanthemum morifolium Ramat. 的干燥头状花序, 始载于《神农本草经》。菊花主要活性成分为黄酮、绿原酸、氨基酸等, 在保护心血管、清除自由基和抗衰老等方面具有显著的生物活性[1]。磷作为植物生长发育不可缺少的营养元素之一, 不仅参与植物体内碳水化合物代谢、氮素代谢和脂肪代谢等生化代谢过程, 且营养对植物体内黄酮、绿原酸等物质的次生代谢过程也有显著影响。Awad 等[2]研究发现, 苹果果皮中绿原酸含量同磷肥施用量呈显著正相关。施用磷肥也可显著提高银杏叶中黄酮的含量和总量, 且银杏叶中黄酮的含量与磷肥施用量呈正比[3]。因此, 施用磷肥也能显著增加忍冬花与叶中绿原酸的含量[4]。在前期研究中发现, 缺磷会影响菊花的生长, 导致菊花产量和总黄酮含量降低[5], 但磷肥对菊花绿原酸和药理活性的效应以及生产该如何合理的施用磷肥都缺乏研究。为此, 本文研究了不同磷肥施用量对菊花药材黄酮、绿原酸等活性成分含量与累积量的动态变化及清除自由基能力的影响, 旨在为菊花规范化栽培中的科学施用磷肥提供指导。

1 材料与方法
1.1 试验设计

试验于 2004 年在华中农业大学微量元素研究室盆栽试验室进行。供试菊花种苗引自湖北省武汉市天河镇药用菊花种植基地, 栽培类型为福满河白菊, 经湖北中医药大学陈科力教授鉴定为杭菊类型。供试土壤为武汉狮子山黄棕壤, 营养成分含量为: pH 5.92, 有机质 2.6 g·kg-1, 碱解氮 21.4 mg·kg-1, 速效磷 3.62 mg·kg-1, 速效钾 0.7 mg·kg-1。

盆栽试验采用聚乙烯塑料桶, 每盆装土 9.0 kg, 并混入 1.0 kg 石英砂(改善盆土通气状况), 共 10.0 kg。根据菊花营养特性, 试验设置了 5 个磷肥施用量, P2O5 分别为 0.00, 0.10, 0.20, 0.30, 0.40 g·kg-1, 并用, P0, P1, P2, P3, P4 表示, 磷肥品种为磷酸二氢钙[Ca(H2PO4)2]。各处理均施用 N 0.30 g·kg-1 土 [(NH4)2 SO4] 和 K2O 0.40 g·kg-1 土 (K2SO4), 再每盆施基 10 g 石灰石调节土壤 pH 和补充钙、镁营养; 同时, 每盆施基 10 mL 阿司匹林等元素混合液以补充土壤微量元素营养。各处理 N
肥分3次施入，P和K肥作为底肥一次施入。每处理4次重复，每盆定植1株菊花扦插苗，定植时间为6月25日。菊花采收期为当年11月1日—12月15日。

1.2 样品的采集与制备

当花朵的舌状花全部、管状花50%左右展开时开始采摘菊花，并按照采收时间先后将菊花分为一朵花（11月10日以前采收）、二朵花（11月10—20日采收）和三朵花（11月20日以后采收）。采收的鲜花及时采用微波进行杀青（500 W, 2 min），并置鼓风干燥箱中于55℃下烘干至全干称重测产。将各处理制备好菊花粉碎样，过40目筛，保存待测。

1.3 菊花活性成分的提取

醇提物：准确称取0.25 g磨细菊花药材粉末于75 mL磨口带塞棕色试剂瓶中，加入25 mL 80%乙醇，称重并浸泡过夜，在30℃下用超声波（40 KHz）浸提30 min，补充80%乙醇至原重，过滤，将滤液密封于2℃下冷藏保存待测。

水提物：准确称取0.50 g磨细菊花药材粉末于带塞三角瓶中，加入20 mL 90℃的蒸馏水，在80℃水浴上浸提30 min，稍冷过滤，滤渣重复提取1次，并用少许蒸馏水反复清洗残渣，所有滤液用50 mL量瓶收集，冷却后定容，保存待测。

1.4 测定方法

1.4.1 总黄酮和绿原酸的测定

吸取菊花醇提物样品，照《中国药典》2005年版铝盐酸比色法测定总黄酮含量（6），高效液相色谱法测定绿原酸（67）。对照品芦丁和绿原酸由Sigma试剂公司提供。将总黄酮和绿原酸的含量乘以菊花干物质质量就为菊花总黄酮和绿原酸的累积量。

1.4.2 菊花中可溶性总糖、可溶性总氨基酸和粗蛋白测定

用氨氮比色法测定菊花可溶性总糖（8）；用三氯醋酸比色法测定可溶性总氨基酸（8）；用开氏法测定菊花中总氮含量后，将测定值乘以6.25，即得到菊花粗蛋白含量（8）。

1.4.3 清除羟自由基能力测定

采用Fenton反应测定菊花水提物样品清除羟自由基（·OH）的能力（9）。取一玻璃试管，并分别吸取加入0.15 mmol·L⁻¹的pH 7.4磷酸缓冲液（PBS）1 mL, 40 mg·L⁻¹的番红花红1 mL, 菊花二水花水提物1 mL, 3%过氧化氢1 mL（新鲜配置），以及0.954 mmol·L⁻¹ EDTA-Fe(II) 1 mL（新鲜配置）。将试剂充分混合，并在37℃水浴中反应30 min后在520 nm处测定光密度。空白组以1 mL蒸馏水代替供试样品，对照组以2 mL蒸馏水代替EDTA-Fe(II)和供试样品，蒸馏水调0，测各组吸光度，按以下公式计算清除率：

$$IR = \frac{(A_{对照} - A_{空白})}{(A_{对照} - A_{空白})} \times 100\%$$

1.4.4 清除超氧阴离子自由基能力测定

采用光电比色法测定菊花醇提物样品清除超氧阴离子自由基（O₂⁻）的能力（10）。用pH 7.8的0.05 mol·L⁻¹磷酸缓冲液（PBS）为溶剂，配制含13.2 μmol·L⁻¹超氧化物四氢基氮唑蓝（NBT，新鲜配制）的试剂，并将菊花二水花醇提物用PBS稀释10倍。分别吸取上述试剂和稀释样品1 mL于玻璃试管中，在25℃，4 000 lx光强下光照反应15 min后，在560 nm处测定吸光度。用PBS代替样品试剂作空白对照，用放在黑暗条件下不加光照处理的试剂作参比，计算清除率。

1.4.5 清除DPPH(1,1-二苯基-2-苯基肼)自由基能力测定

采用Von-Gadow等的方法测定菊花醇提物样品清除DPPH·自由基的能力（11）。用无水乙醇作试剂配制200 μmol·L⁻¹的DPPH溶液（新鲜配制），并加入2 mL水花水醇提物用无水乙醇稀释50倍。吸取2 mL稀释样品溶液于试管中，然后加入2 mL DPPH·溶液（200 μmol·L⁻¹），充分混匀在室温下反应5 min后，在517 nm波长处测定吸光度。用2 mL无水乙醇代替样品试剂作空白对照，并用无水乙醇作参比，计算清除率。

2 结果与分析

2.1 施用磷肥对菊花产量的影响

缺磷（P₀和P₁）时，菊花植株生长发育迟缓，植株矮小，分枝少，花朵数少，花径小，且叶色在生育前期浓绿而生育后期会呈现青黄青显。施用磷肥可显著促进菊花生长发育，并显著提高菊花的干花产量。菊花一水花干花产量随着施磷量的提高而大幅增加；二、三水花及总产量是先随着施磷量的提高而逐步增加，同对照（P₀）相比，P₂处理干花总产量增加了129.94%；但当磷肥施用量超过0.20 g·kg⁻¹，P₁和P₂处理上述各期花的干花产量不再随施磷量增加而继续提高，相反，P₁处理有一定幅度下降，即缺磷和磷肥施用量过高都不利于提高菊花产量。随着磷肥施用量的增加，P₀～P₂处理一水花产量占总产量的比
例上升，而三水花产量占总产量的比例下降，这说明施用磷肥促进菊花花期提前（早熟）。将菊花全生育期干花总产量(Y)与磷肥施用量(X)进行回归分析，可得一元二次多项式模型：

$$Y = 26.52 + 232.30X - 418.52X^2 \quad (r = 0.937)$$

当施磷量为0.277 $g \cdot kg^{-1}$时，菊花干花总产量最高可为58.75 g/株，见图1。

![图1 施用磷肥对菊花干花产量的影响（$n=4$）](image)

2.2 施用磷肥对菊花中总黄酮含量与累积量的影响

表1 施用磷肥对菊花中总黄酮含量与累积量的影响（$x \pm s, n=4$）

<table>
<thead>
<tr>
<th>处理</th>
<th>一水花</th>
<th>二水花</th>
<th>三水花</th>
<th>一水花</th>
<th>二水花</th>
<th>三水花</th>
<th>总量</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>10.22 ± 0.69a</td>
<td>9.89 ± 0.91a</td>
<td>10.16 ± 0.97a</td>
<td>0.22 ± 0.07c</td>
<td>1.01 ± 0.27d</td>
<td>1.35 ± 0.36b</td>
<td>2.59 ± 0.68d</td>
</tr>
<tr>
<td>P_1</td>
<td>9.39 ± 0.35b</td>
<td>8.12 ± 0.43b</td>
<td>7.34 ± 0.39b</td>
<td>0.74 ± 0.25b</td>
<td>1.68 ± 0.11c</td>
<td>1.27 ± 0.31b</td>
<td>3.69 ± 0.22c</td>
</tr>
<tr>
<td>P_2</td>
<td>10.30 ± 0.41a</td>
<td>9.28 ± 0.36a</td>
<td>7.73 ± 0.14a</td>
<td>0.84 ± 0.07b</td>
<td>2.58 ± 0.10a</td>
<td>1.89 ± 0.32a</td>
<td>5.31 ± 0.29a</td>
</tr>
<tr>
<td>P_3</td>
<td>9.00 ± 0.47c</td>
<td>8.23 ± 0.24c</td>
<td>7.51 ± 0.14c</td>
<td>1.26 ± 0.10a</td>
<td>1.74 ± 0.11c</td>
<td>1.44 ± 0.21ab</td>
<td>4.44 ± 0.20b</td>
</tr>
<tr>
<td>P_4</td>
<td>8.73 ± 0.25c</td>
<td>8.26 ± 0.28b</td>
<td>7.52 ± 0.45b</td>
<td>1.08 ± 0.17a</td>
<td>2.15 ± 0.13b</td>
<td>1.19 ± 0.11b</td>
<td>4.43 ± 0.33b</td>
</tr>
</tbody>
</table>

2.3 施用磷肥对菊花中绿原酸含量和累积量的影响

各处理菊花中绿原酸含量和累积量的变化趋势，同总黄酮的变化趋势基本一致，见表2。低磷处理(P_0)菊花各期花中绿原酸含量均较低，提高磷肥施用量后，P_2～P_4处理不同花期花中绿原酸含量一般较P_1处理有不同程度的增加，并以P_4处理增加的幅度最大，而P_3和P_4处理一、二水花中绿原酸的含量较P_1处理有小幅的降低，但差异不显著。上述结果表明，施用磷肥也可提高菊花中绿原酸的含量。P_0处理不同花期花中绿原酸含量也非常高，说明在严重缺磷时也会导致菊花植株体内绿原酸的累积。一水、二、三水花中绿原酸累积量及全株绿原酸累积量的总磷肥施用量呈正相关线形的关系。即菊花不同花期花中绿原酸累积量随着施磷量的提高先大幅上升，当达到顶点后继续提高磷肥施用量，呈现下降趋势。将菊花全株绿原酸累积量(Y)同磷肥施用量(X)进行回归分析，可得一元二次多项式模型：

$$Y = 139.12 + 926.97X - 1720.51X^2 \quad (r = 0.838)$$

当施磷量为0.269 $g \cdot kg^{-1}$时，菊花全株绿原酸累积总量可为263.98 mg/株。
2.4 施用磷肥对菊花中可溶性糖、可溶性氨基酸及粗蛋白含量的影响

磷肥施用量过低（<0.20 g·kg⁻¹）或过高（>0.30 g·kg⁻¹）都不利于菊花中可溶性糖的积累，当磷肥施用量为0.20~0.30 g·kg⁻¹时，菊花各期花中可溶性糖含量最高，见表3。而菊花各期花中可溶性氨基酸和粗蛋白的含量一般随着磷肥施用量的提高呈逐步降低的趋势，即磷肥施用量同菊花各期花中可溶性氨基酸和粗蛋白含量成负相关。从表3还可知，菊花花中可溶性糖和可溶性氨基酸的含量随采收期的进行和外界温度的降低将逐步增加；与此相反，菊花中粗蛋白含量则是呈逐步下降的趋势。

<table>
<thead>
<tr>
<th>处理</th>
<th>一水花</th>
<th>二水花</th>
<th>三水花</th>
<th>一水花</th>
<th>二水花</th>
<th>三水花</th>
<th>总量</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td>0.58 ± 0.04a</td>
<td>0.50 ± 0.08a</td>
<td>0.61 ± 0.10a</td>
<td>12.90 ± 4.60c</td>
<td>50.86 ± 15.92d</td>
<td>81.53 ± 25.78ab</td>
<td>145.30 ± 44.52d</td>
</tr>
<tr>
<td>P₁</td>
<td>0.49 ± 0.05b</td>
<td>0.37 ± 0.03c</td>
<td>0.46 ± 0.01b</td>
<td>38.14 ± 11.35e</td>
<td>76.70 ± 8.10c</td>
<td>77.66 ± 15.24b</td>
<td>192.50 ± 17.83c</td>
</tr>
<tr>
<td>P₂</td>
<td>0.56 ± 0.04a</td>
<td>0.47 ± 0.01ab</td>
<td>0.45 ± 0.02b</td>
<td>45.78 ± 4.47c</td>
<td>129.59 ± 5.25a</td>
<td>109.61 ± 14.80a</td>
<td>284.99 ± 14.10a</td>
</tr>
<tr>
<td>P₃</td>
<td>0.47 ± 0.05b</td>
<td>0.42 ± 0.07abc</td>
<td>0.48 ± 0.01b</td>
<td>65.43 ± 5.37a</td>
<td>87.54 ± 9.77bc</td>
<td>92.47 ± 14.14b</td>
<td>245.43 ± 20.77ab</td>
</tr>
<tr>
<td>P₄</td>
<td>0.47 ± 0.03b</td>
<td>0.40 ± 0.02bc</td>
<td>0.48 ± 0.21b</td>
<td>58.10 ± 11.13a</td>
<td>103.81 ± 9.22b</td>
<td>76.31 ± 2.89ab</td>
<td>238.22 ± 19.50b</td>
</tr>
</tbody>
</table>

表3 施用磷肥对菊花中可溶性糖、可溶性氨基酸及粗蛋白质量分数的影响（x ± s, n = 4）

2.5 施用磷肥对菊花清除自由基能力的影响

施用磷肥对菊花抗氧化活性有显著影响，见表4。P₁处理（10.0 g·kg⁻¹）菊花二水花提取物对·OH、O₂⁻和DPPH·自由基的清除率均比较低，提高磷肥施用量后，P₂、P₃处理对3种自由基的清除能力显著增强，其中P₃处理较P₁处理分别增加了4.46%、11.93%、22.36%。但当磷肥施用量超过0.20 g·kg⁻¹时，P₁、P₂两高磷处理的菊花二水花提取物对3种自由基的清除能力不再上升，反转P₂处理呈现出逐步下降趋势。另外，不施磷肥处理（P₀）菊花第二水花提取物对3种自由基也保持着较高的清除能力。

2.6 菊花活性成分含量及自由基清除率之间的相关分析

将各处理菊花二水花总黄酮、绿原酸、可溶性糖、可溶性氨基酸和粗蛋白的含量，及其提取物对·OH、O₂⁻、DPPH·自由基的清除率进行相关分析，见表5。菊花中总黄酮和绿原酸含量之间呈显著正相关，且菊花总黄酮和绿原酸含量还分别同菊花活性成分含量及自由基清除率之间的相关分析中的相关性呈正相关。

<table>
<thead>
<tr>
<th>处理</th>
<th>·OH</th>
<th>O₂⁻</th>
<th>DPPH·</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td>80.87 ± 1.19a</td>
<td>61.92 ± 1.51a</td>
<td>31.69 ± 1.51a</td>
</tr>
<tr>
<td>P₁</td>
<td>76.64 ± 1.62b</td>
<td>56.91 ± 0.79d</td>
<td>25.22 ± 1.88c</td>
</tr>
<tr>
<td>P₂</td>
<td>80.06 ± 1.54a</td>
<td>63.70 ± 0.52a</td>
<td>30.86 ± 0.46a</td>
</tr>
<tr>
<td>P₃</td>
<td>75.52 ± 0.90b</td>
<td>58.60 ± 0.53c</td>
<td>26.95 ± 1.05bc</td>
</tr>
<tr>
<td>P₄</td>
<td>73.26 ± 1.35c</td>
<td>57.85 ± 1.53cd</td>
<td>27.99 ± 0.82b</td>
</tr>
</tbody>
</table>

表4 施用磷肥对菊花提取物·OH、O₂⁻和DPPH·自由基清除率的影响（x ± s, n = 4）

由于图片中的文字内容较多，无法一一转录为自然语言。
3 讨论

黄酮和绿原酸等酚类物质是通过植物体内莽草酸代谢途径合成的[12-13]。在这一次生代谢过程中需要磷酸（Pi）、腺苷三磷酸（ATP）、辅酶Ⅱ（NADP⁺）、辅酶A（CoA）等物质参与，而磷又为植物体Pi、ATP、NADP⁺、CoA等成分，促进了植物中黄酮和绿原酸等活性成分的合成。有报道，植物吸收过多的磷素营养会促使植物呼吸作用过于旺盛，消耗大量能量（ATP）和糖分，造成消耗的干物质大于积累的干物质，并引起植物早熟，从而减少植物体内糖和干物质的积累[14]。且施磷过量还会导致植物体内养分不平衡，诱发微量元素的缺乏[14]。所以磷肥施用量过高，会促进植物生长（早熟），导致花瓣延长，花中可溶性糖、可溶性氨基酸及粗蛋白含量显著下降，反而影响植物绿原酸代谢过程，造成植物中黄酮和绿原酸等活性成分含量上升及累积量显著降低。

为进一步分析，不施磷肥处理（P₀）植物中总黄酮和绿原酸含量也较高，这可能有两方面原因。一是植物在严重缺磷胁迫下会被诱导产生和分泌酚类、碳水化合物，从而实现土壤中难溶性磷，促进植物对磷元素的吸收利用[15]。所以严重缺磷可能会诱导植物绿原酸产生大量的绿原酸等酚类、碳水化合物来活化土壤中的磷，导致植物绿原酸和总黄酮的含量提高，从而促进了植物对磷营养的吸收利用。Koppe 等[16]也研究发现，磷胁迫下向日葵根分泌物中绿原酸等酚类物质的含量显著增加。另外，植物缺磷最典型的状态之一是易形成花蕾，而花蕾为黄酮类化合物的一种，也是通过莽草酸代谢途径生成，这也为本观点提供了证据。二是不施磷肥处理，花朵含水量低，折干率高，花中干物质含量相对较高，因而“浓缩效应”导致花中光合产物及其转化产物以及黄酮、绿原酸等酚类物质合成的直接前体物质的浓度提高，从而有利于产物总黄酮、绿原酸等酚类物质的合成与积累。

植物中总黄酮、绿原酸含量随着采收期的进行将逐步降低，而可溶性糖、可溶性氨基酸含量随着采收期的进行是逐步升高，这可能同采收期外界环境温度逐步降低、昼夜温差加大和植物采摘部位变化有关。杨俊等[17]研究表明，油花中各种活性成分在采摘期中的动态变化时，也得到过相似的结果。清除自由基和抗氧化是黄酮和绿原酸等天然酚类物质的重要生物活性之一[18]。Duh 也证明黄花中酚类物质促进其抗氧化活性[19]。本试验也研究发现黄花中总黄酮和绿原酸含量及绿原酸提取物对·OH、O₂⁻、DPPH·自由基的清除率等指标之间，分别呈显著正相关。施用磷肥在提高了黄花中黄酮和绿原酸等活性成分含量的同时，也增强了黄花清除自由基的功能。综合比较施用磷肥对黄花产量、活性成分含量与积累量及清除自由基能力等因素的影响，建议黄花育期内施磷肥（P₂O₅）施用量在 0.26 ~ 0.28 g·kg⁻¹为适宜。

【参考文献】
[4] 徐凌川, 张永清, 王绪平,等. 施肥对冬小麦生长发育及体内化
Effects of phosphate fertilizer on active ingredients and antioxidant activities of Chrysanthemum morifolium

LIU Dahui1,2,3, LIU Wei1, ZHU Duanwei1*1, GUO Lanping 2, JIN Hang3, ZUO Zhitian3, LIU Li3

1. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China;
2. Institute of Chinese Material Medica, China Academy of Chinese Material Science, Beijing 10070, China;
3. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650231, China

[Abstract] Objective: In order to provide a scientific fertilizer application for the standardized cultivation, the effects of phosphate (P) fertilizer on the active ingredients and antioxidant activities of Chrysanthemum morifolium were studied. Method: Pot experiment was adopted to study the effects of P supply on the yield and the content of flavonoids, chlorogenic acid, soluble sugar, soluble amino acids and crude protein of C. morifolium flower. And effects of P supply on the hydroxyl radical scavenging activity, superoxide anion radical scavenging activity, 2, 2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging activity of flower were researched too. Result: The yield of C. morifolium dry flower increased 129.94% when P fertilizer was applied. Appropriate application of P fertilizer could also significantly improve the content and accumulation of total flavonoids, chlorogenic acid and soluble sugar in C. morifolium. Thus, the inhibition rates of hydroxyl radical, superoxide anion radical and DPPH free radical of C. morifolium was increased. When the level of P supply exceeded 0.20 g P2O5 per plant, P had also negative influence on the yield and the content of active ingredients and the scavenging activity of hydroxyl radical, superoxide anion radical and DPPH free radical of C. morifolium. Furthermore, there were significant positive correlations between the content of total flavonoids and chlorogenic acid and the inhibition rate of hydroxyl radical, superoxide anion radical and DPPH free radical, respectively. Conclusion: Appropriate application of P fertilizer could be beneficial to the increase the active components and antioxidant activity of C. morifolium. And recommended level of P fertilizer is 0.26-0.28 g · kg⁻¹.

[Key words] Chrysanthemum morifolium; phosphate (P); flavonoids; chlorogenic acid; antioxidant activities

doi: 10.4268/cjcmn20101704