分子生药学在蒙药研究中的应用

李霞全1,2, 周立社2, 郭兰萍1, 李为民1,2*, 张娜2, 袁庆军1, 袁媛1

1. 中国中医科学院 中药研究所，北京 100070；
2. 内蒙古科技大学 包头医学院，内蒙古 包头 014060

【摘要】 分子生药学为生药学与分子生物学有机融合形成的新边缘学科，通过联系分子生药学的理论和技术在中药中的应用，分析了分子生药学在蒙药中的应用研究方向，认为它在蒙药的鉴定、蒙药药用植物资源的评价及保存、蒙药药用植物活性成分的生物合成及调控、以及蒙药的道地性及分子机制等研究方面具有新的指导意义，并为蒙药的现代化研究提供了新方法、新思路。

【关键词】 分子生药学, 蒙药研究，资源保护


1 蒙药的鉴定

据资料统计，经考证的蒙药共有1340余种，来源于植物类的蒙药占到全部蒙药的70%以上[4]。由于内蒙古自治区区域广阔，药用资源分布区域差异明显，各地方甚至连物产和生产过程中的特有自然条件及药物学特征等诸多原因，在蒙药中，同一品种的名称、基源、临床效用与使用等方面因地、因人而异的现象极为普遍。例如蒙药“地格达”，作为蒙药常用药之一，具有清热解毒、凉血消肿、平息“协日”、愈伤之功效[4]。然而，根据文献记载和实际调查研究，内蒙古地区作为“地格达”类蒙药使用的植物多达7科30余种[4,5]。现总结如下：①龙胆科，肋柱花 Lomatogonium rotatum，印度獐牙菜 S. chyiraita，瘤毛獐牙菜 S. pseudochinensis，兴安獐牙菜 S. dilute，拖茎獐牙菜 S. franchetiana，鸢尾花当 Anagallium dichotomum。尖叶假龙胆 Gentianella acuta，扁蕾 Gentianopsis babarba，湿生扁蕾 G. paludosus，花柄 H. corniculata，椭圆叶花柄 H. elliptica，小龙胆 Gentiana parvula，华南龙胆 G. loureii；②堇菜科，紫花地丁 Viola philippica，东北堇菜 V. mandshurica，白花堇菜 V. lactiflora，早开堇菜 V. prionantha；③虎耳草科，梅花草 Parnassia palustris，细叶梅花草 P. oxeophila，半柄虎耳草 Saxifraga paszamensis，爪瓣虎耳草 S. unguiculata，小金虎耳草 S. umbellulata；④罂粟科，紫堇 Corydalis edulis，细紫堇 C. sibirica；⑤豆科，甜地丁 Glandenstaedtia multiflora，地丁 G. verria，狭叶米口袋 G. stenophylla，甘露米口袋 G. gansuensis；⑥石竹科，白头翁耳 C. caespitosum，田野卷耳 C. arvense；⑦菊科，大丁草 Leontzia anandria，

由于“地格达”类蒙药基原植物极为复杂，不同科属的植物在不同地区等同同名，致使目前“地格达”类蒙药在不同地区市场流通、医药部门及制药企业应用十分混乱，严重影响其制药的药物效果。除了药材的来源直接影响药物效果，其他因素如药物的道地性、采收时期、加工炮制方法等也都影响蒙药中有效成分的有无及含量的多少。因此，分子技术鉴定方法要明确蒙药的化学成分及其含量，而理化方法虽然能够确定蒙药中所含某些化学成分但并不能确定蒙药基原植物的基原，这为蒙药的正本清源带来较大影响。而且蒙药中大约有20%药材为动物药，它们的外观有时极为相似，特别是当部分组织器官入药时，由于外部形态破坏，组织学特征不明显加之理化成分复杂，专属性和重复性差，使得蒙药的鉴
境内具有药用价值的野生植物中有17种药用植物已被列入国家珍稀濒危保护植物名录[30]。并且在内蒙古自治区人民政府办公厅于2008年颁布的《内蒙古珍稀濒危植物名录》中，沙冬青Ammpiphitus mongolicus被列入一级保护植物；文冠果Xanthoceras sorbifolia、甘草Glycyrrhiza uralensis、蒙古黄芪Astragalus membranaceus var. mongolicus等被列入二级保护植物。

分子生物学的快速发展及其在药学中的应用推动了分子药学学的发展。相关研究资料表明，遗传多样性对多种环境的适应能力和生物长期存活十分重要，动物遗传多样性和生物种群的遗传多样性是物种濒危的重要内因[31]。以DNA多态性分析为基础的分子标记技术和系统生物学方法可以使研究DNA变异的多样性和确定物种保护的基本单元，并可推测群体的发展状态和濒危程度，从而为生物多样性的研究和#评价药用植物资源保护的对策的制定提供了新的操作性强的手段[32]。蒙药中90%药材来源于动植物，它们的遗传多样性是决定其能否适应环境变化的重要因素。

因此，将分子药学等学科研究多用途的动植物药物应用到蒙药动植物的保护和利用研究中，是降低濒危种药物的依赖达到保护资源的目的[33]。该理论与技术同样可以应用到快速寻找和扩大药用资源从濒危动植物的资源中，快速有效地寻找和资源量也少的濒危药物的替代品，以此来减少对濒危药用资源的需求从而达到保护蒙药资源的目的。此外，还应该加强蒙药种质资源的保护。保护蒙药种质资源，即是保护蒙药资源的遗传多样性及物种种多样性，是培育优良蒙药品种、防止中药资源过度地品种性退化及保护环境稳定性的重要有保障[34]。在内蒙古蒙药资源的鉴定研究中，我们采用分子生物学技术，如基因扩增技术、PCR技术和DNA测序技术，以及计算机技术等手段，对蒙药资源进行鉴定和分析，为蒙药资源的保护和利用提供科学依据。
3 蒙药药用植物活性成分的生物合成及调控

对植物而言，次生代谢产物是其作为药物的物质基础。

然而，来源于药用植物的次生代谢产物往往含量低，且天然药用植物药用资源有限等因素又增加了药物开发的难度[39]。因此，研究药用植物次生代谢产物的形成机制，开展次生代谢产物的调控及生物合成，或是次生代谢产物的基因工程，以此来提高生理药效成分的含量是药物学研究的热点[40]。次生代谢的相关研究已在许多中药如亚麻 Linum flavum[41]、青蒿 Artemisia annua[42]、红豆杉 Taxus chinensis[43]等的研究中取得了重大突破。

蒙药的药用价值是蒙古族药用植物的次生代谢产物，而且相关统计表明蒙药中的某些药材在某些疾病的治疗上有不可替代的作用。例如广霍香 Cheesopodium axillaris 为蒙医习惯用药材之一，其性平，味甘，酸，具有气化湿、养心安神之功效，用于气滞血瘀、胸痹作痛、心悸气短、心神不安。其化学成分主要包括黄酮类、挥发油、生物碱等，其中黄酮类成分具有抗氧化、抗炎、抗肿瘤等生物活性，可用于治疗心脑血管疾病、糖尿病等慢性疾病，生物碱成分具有镇痛、镇静、抗炎等作用，可用于治疗疼痛性疾病。

4 蒙药的药性及分子机制研究

内蒙沙鼠 Cistanche deserticola，沙枣 Hippophae rhamnoides，锁阳 Cynomorium songaricum 等是药用植物的道地药材。据文献考证，传统蒙医药学十分重视蒙药药效及其对药物疗效的影响，著名的蒙药本草学《蒙药正典》详细记载了多种蒙药的疗效及使用方法，例如《蒙药正典》中认为该药能活血通络，用于治疗高血脂症及神经功能障碍。

然而，现代对蒙药药性道地性研究甚少，加之环境条件的变迁，对蒙药的野生资源的过度采集、种植过程中不适当的措施（盲目引种）等导致了药用植物的基因变异，严重削弱了蒙药的药性。所以有必要利用分子生物学的理论和技术加强蒙药药性研究工作，这不但能为蒙药质量提升和蒙药药效的提升提供理论基础，而且能为蒙药资源的保护和合理利用提供科学依据。

江苏中药现代化研究在分子药理学中的应用，弥补了 DNA 分子遗传标记技术在道地药材基因资源鉴定方面的不足。能够对有明显 DNA 差异“烙印”的道地药材进行准确的分子鉴定，更重要的是能够判断出道地药材是否具有明显的 DNA 差异“烙印”，并为无明显 DNA 差异“烙印”的道地药材阐明其遗传上的原因[52]。因此，应用分子药理学及 DNA 分子遗传标记技术可以准确地对蒙药的药性进行鉴定，这无论是在提高蒙药的质量还是在保护蒙药的优质资源及道地产区上都具有重要的意义。其次，应该根据野生、家种蒙药的地理分布，在道地和非道地产区内外取有代表性的居群采样，并观察居群间的形态差异和生态环境变化。根据叶绿体 DNA（cpDNA）基因序列从采集的样品中筛选出多态性较高的片段，用这些片段进行样品测序，检测出 cpDNA 单倍型。基于单倍型间的遗传分化，研究居群间的演化规律和亲缘关系，构建居群关系图系，结合药用道地性形成的历史，探讨蒙药药材道地性的形成与居群演化的关系。最后，重视道地药材的栽培育种。蒙药药材中很大一部分药材使用的是野生资源，即使有部分药材如甘草、蒙古黄芪、沙棘等在内蒙古有道地的种植产区，但由于没有引种驯化出优质的种质资源使得现有的栽培蒙药药材品质退化。然而，对道地药材的进行分子药理学研究，在揭示野生道地居群进化历史的基础上，分析栽培道地药材引种过程的来源和质量，区分出具有道地单倍型或基因型的个体及具有非道地单倍型或基因型的个体，进一步分析形成不同基因型的纯合性或杂合性，最终选出与道地性相关的基因型并使之固定下来，从而大大地缩短人工选育的过程，有效地解决道地药材栽培中的种质退化问题[52]。

总之，蒙药学是我国传统医药中不可忽视的财富，它对许多常见病、多发病、疑难病症(如心血管疾病、糖尿病、血液病、肝病等)都有着独特的疗效[51]，然而我国现阶段有关蒙
药的研究却十分落后。因此，应该借助包括分子药学、药代药理学、植物化学等学科的先进理论与技术，使蒙药研究进入一个崭新的阶段。这对加快蒙药现代化发展，复兴与继承民族医药文化意义重大。

【参考文献】

Application of molecular pharmacognosy in research of Mongolian medicine

LI Qianquan¹ ², ZHOU Lishé², GUO Lanping¹, LI Minhui¹ ², ZHANG Na², YUAN Qingjun¹, YUAN Yuan¹

¹. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
². Baotou Medical College, Baotou 014060, China

[Abstract] Molecular pharmacognosy has developed as a new borderline discipline. Using the method and technology of molecular pharmacognosy, a wide range of challenging problems were resolved, such as the identification of Mongolian medicinal raw materials, etiology of endangerment and protection of endangered Mongolian medicinal plants and animals, biosynthesis and bioregulation of active components in Mongolian medicinal plants, and characteristics and the molecular bases of Dao-di Herbs. So molecular pharmacognosy will provide the new methods and insights for modernization of Mongolian medicine.

[Key words] molecular pharmacognosy; Mongolian medicine research; resource protection

doi:10.4268/cjcmn20111903

[责任编辑 吕冬梅]