尿液 NGAL, KIM-1, IL-18 在商陆所致的大鼠肾损伤中的变化特征及其联合检测的意义

李一飞, 徐婷婷, 姚广涛*, 金若敏

(上海中医药大学 药物安全评价研究中心, 上海 201203)

【摘要】目的: 探讨肾损伤标志物中性粒细胞明胶酶相关脂质运载蛋白 (NGAL)、肾损伤因子-1 (KIM-1)、白介素-18 (IL-18) 在商陆所致的大鼠肾损伤中的变化特征及其联合检测的意义。方法: Wistar 大鼠随机分为商陆水煎液高、低剂量 (生药 40, 20 g · kg⁻¹ · d⁻¹) 组和对照组, 连续灌胃 35 d。于第 7, 14, 21, 28, 35, 42 d 采集血、尿样, 并分批解剖处理。生化分析仪检测血清总蛋白 (TP)、白蛋白 (ALB)、尿素氮 (CR)、尿液 uTP, uALB 含量, 酶联免疫吸附法 (ELISA) 检测尿液 NGAL, KIM-1, IL-18 浓度。光镜/电镜下观察肾脏病理组织形态学改变。ROC 曲线比较各血清/尿液指标及联合检测的曲线面积。结果: 给予大鼠 40, 20 g · kg⁻¹ · d⁻¹ 商陆水煎液 35 d 可致肾损伤, 以肾小管上皮细胞变性、蛋白管型为主要病理表现, 恢复后部分损伤可逆。与对照组相比, 各剂量组 BUN, CR, uTP 多呈下降趋势, 第 21 天 uALB 显著升高且持续至给药末。NGAL, KIM-1, IL-18 第 7 天即开始升高, 第 14 天起各剂量组均有显著性差异 (P < 0.01), 恢复期高剂量组 KIM-1 仍有显著变化。ROC 分析三者的曲线面积为 0.846, 0.837, 0.863 (P < 0.01), 远远高于 BUN, CR 等。而联合检测的面积达 0.947。结论: 尿液 NGAL, IL-18, KIM-1 能在一定程度上预测或提示肾损伤的发生、发展, 具有较高的敏感性和部位特异性。其联合检测更能提高检验效能。

【关键词】NGAL; KIM-1; IL-18; 联合检测; 商陆; ROC

药物性肾损伤是临床不可忽视的一大类肾脏疾病。如何尽早的发现药物对肾脏的毒害作用, 多年来受到广泛关注。探求更为早期、灵敏、特异的肾损伤标志物对临床诊断、治疗和药物毒性预测、评价都有着重要意义。目前, 在对中药所致的肾损伤相关研究中, 涉及肾损伤标志物检测的还处于初期阶段。本研究选用中药商陆, 灌服大鼠水煎液, 分析肾损伤标志物的变化, 结合传统肾功能指标检测和组织形态学观察, 评价各标志物的检验效能及其联合检测在商陆毒性评价中的价值。以期为中药肾毒性评估的临床前预测提供新思路, 为临床肾损伤的防治提供参考。

【基金项目】国家自然科学基金项目（编号 20120515018）；国家“重大新药创制”科技重大专项（2009ZX09502-002）；上海市教委委预项目（2010JW30）

【作者简介】李一飞, 博士研究生, Tel: (021) 51323053; E-mail: liyi@126.com.cn

1 材料
1.1 动物 健康 Wistar 大鼠 (180 ± 20) g 共 108 只, 雌雄各半, 由上海西普尔·必凯实验动物有限公司提供, 许可证号 SCXK (沪)2008-0016, 中药生药。于上海中医药大学实验动物中心饲养和管理, 20~25 ℃恒温, 12 h/12 h 明暗光照周期, 动物可自由摄食和饮水。

1.2 药材 商陆, 河北商陆, 产地四川, 四川新荷花中药饮片有限公司提供, 批号 1011046。参照 2010 年版《中国药典》“商陆含量测定方法”及文献报道[1], 测得商陆药材中商陆皂苷甲的质量分数为 2.95 g · g⁻¹ (生药), 符合《中国药典》规定。

药物洗脱: 取生商陆片 1 kg, 加 5 倍量纯净水浸润 90 min 左右, 将药液置于武火煮沸后, 文火煎煮 30 min, 趁热过滤, 收集滤液。如此共煎煮 2 次。合并滤液, 在 60~80 ℃浓缩至 500 mL, 即得 2 g · mL⁻¹ 的商陆水煎液。临用前添加纯净水稀释至所需浓度。
海达为科生物科技有限公司，批号 2011111。

1.4 仪器 Waters 2695 (Alliance 系统) 高效液相色谱仪；光电二级管阵列 (photo-diode array detector, PDA) 检测器；日立 7080 全自动生化分析仪(日本 HITACHI 公司生产)；BXS1 正置显微镜，OLYMPUS DP72 高分辨专业数码显 CCI（日本欧林巴斯光学株式会社生产）；Thermo MK3 酶标仪（热电上海仪器有限公司）。

2 方法

2.1 分组、给药和处理 Wistar 大鼠实验前适应性饲养 1 周，随机分为商陆高剂量组、商陆低剂量组、对照组，每组 36 只。分别灌胃给予 2.1 g · mL⁻¹ 商陆水煎液和等容量纯净水，20 μL · g⁻¹，每天给药 1 次，连续 35 d，停药恢复期 7 d。

2.2 常规生化指标检测 各时间点各组动物的血液、尿液以 5 000 r · min⁻¹ 离心 15 min 后取上清液，全自动生化分析仪检测血清 TP，ALB，BUN，CR；尿液 uTP，uALB。余下尿样置于 -80 ℃ 冻存。

2.3 肾损伤标志物检测 按试剂盒说明书，采用 ELISA 方法检测各时间点尿液样本中 NGAL，KIM-1，IL-18 的含量。冻存样本检测前 4 ℃ 复温，如出现沉淀，以 3 000 r · min⁻¹ 离心 15 min 后取上清用于检测。

2.4 肾组织形态学观察 对各时间点各组左肾标本，置于 10% 福尔马林固定，制备石蜡切片，常规 HE 染色后光学显微镜下观察肾组织形态学变化。

将肾脏病变程度分为 5 个等级："-”、肾组织结构正常；“+”，轻微异常（可见散在的细胞变性或坏死）；“++”，轻度损伤（可见较多的细胞变性或坏死，病变呈局灶性）；“+++”，中度损伤（可见肾小管或肾小球结构变化，病变呈弥漫性）。分别计数 0～4 分。对第 7，14 天各组右肾标本，取皮髓交界组织置于 4 ℃，2.5% 戊二醛溶液中固定，制备超薄切片，经染色，透射电镜观察肾小球和肾小管超微结构。

2.5 统计分析 统计学分析应用 SPSS 18.0 统计软件。计量资料以 x ± s 表示，2 组间比较采用 t 检验，方差齐性时以 LSD 方法，方差不齐时以 Dunnnett’s 方法分析。等级资料进行秩转换的非参数检验，以 Radit 分析比较多组间病理损伤程度的差异。二元 Logistic 回归分析计算 NGAL + KIM-1 + IL-18 对各样本的预测概率值及回归方程，ROC 曲线计算并比较各标志物及联合检测预测概率的曲线下面积、置信区间、面积。P < 0.05 为差异有统计学意义。

3 结果

3.1 血清生化指标 BUN 给药后略有升高再持续降低。与对照组相比，高剂量组在前 3 个小时点略有上升，其中第 21 天显著性升高（P < 0.01），第 28 天开始显著性下降（P < 0.05），直至第 35 天；低剂量组第 14 天稍有升高但无差异，第 21 天起开始下降，第 28，35 天均有显著性降低（P < 0.01）。

CR 给药后持续性降低。与对照组相比，高剂量组较为突出，各时间点均有显著差异（P < 0.05 或 P < 0.01）；低剂量组仅第 35 天有显著变化（P < 0.01）。而不同剂量组间有一定的量效关系。恢复期结束时，各剂量组 BUN，CR 与对照组均无差异。见表 1。

表 1 商陆水煎液对大鼠血清 BUN, CR 的影响（x ± s，n = 8）

<table>
<thead>
<tr>
<th>时间/d</th>
<th>BUN/mmol · L⁻¹</th>
<th>CR/μmol · L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>对照组</td>
<td>高剂量组</td>
</tr>
<tr>
<td>7</td>
<td>4.09 ± 0.50</td>
<td>4.03 ± 0.51</td>
</tr>
<tr>
<td>14</td>
<td>4.33 ± 0.66</td>
<td>4.55 ± 0.69</td>
</tr>
<tr>
<td>21</td>
<td>4.40 ± 0.40</td>
<td>4.30 ± 0.68</td>
</tr>
<tr>
<td>28</td>
<td>6.23 ± 0.33</td>
<td>5.14 ± 0.87(1)</td>
</tr>
<tr>
<td>35</td>
<td>5.31 ± 0.43</td>
<td>4.31 ± 0.15(2)</td>
</tr>
<tr>
<td>42</td>
<td>5.10 ± 1.15</td>
<td>4.80 ± 0.56</td>
</tr>
</tbody>
</table>

注：与对照组相比，1 P < 0.05；2 P < 0.01；与低剂量组相比，3 P < 0.05；4 P < 0.01（图 1，表 2.3 同）。
TP 多有持续性升高。与对照组相比，低剂量组为突出，第 7, 21, 28, 35 天均有显著性升高（P < 0.01），停药后无差异；高剂量组第 21 天起开始升高，第 35, 42 天亦有显著性升高（P < 0.01）。见图 1。

ALB 高剂量组与对照组相比持续下降趋势，第 28 天较对照组和低剂量组均有显著性降低（P < 0.01 或 P < 0.05）。低剂量检测值多高于对照组，仅第 7 天有显著性差异（P < 0.01）。见图 1。

3.2 尿液生化指标 uTP：各剂量组在各时间点持续下降趋势，与对照组相比，第 7, 14, 35, 42 天均有显著性降低（P < 0.05 或 P < 0.01）。见图 2。

uALB：与对照组相比，低剂量组第 21, 28 天、高剂量组第 21, 28, 35 天的有显著性升高（P < 0.05 或 P < 0.01）。与低剂量组相比，高剂量组的 uALB 在第 28, 35 天亦有显著升高（P < 0.01）。恢复期后各剂量组与对照组无显著差异。见图 2。

3.3 肾损伤标志物 与对照组相比，各剂量组尿液标志物 NGAL, KIM-1, IL-18 在第 7 天即开始升高，第 14 天起均有显著性差异（P < 0.01），且变化持续至第 35 天。恢复期高，低剂量组各检测值仍高于对照组，但仅高剂量组 KIM-1 有显著性差异（P < 0.01）。与相应时间点低剂量组比较，高剂量组第 14 天 uNGAL, KIM-1, IL-18, 第 21 天 KIM-1, IL-18 亦有显著性升高（P < 0.05 或 P < 0.01）。见表 2。

3.4 病理学 光镜：病理部位以肾小管为主。高剂量组损伤出现较早，第 14 天起即有局灶性肾小管上皮细胞变性坏死脱落，第 21 天起肾小管管腔内还可见蛋白管型，至第 35 天均有表现。低剂量组第 21
天起出现局灶性肾小管上皮细胞变性脱落，第 28 天起同时可见肾小管管型和局灶型肾皮质间质纤维化，均持续至第 35 天。第 42 天各剂量组损伤稍有减轻。经 Radit 分析，高剂量组第 14, 21, 28, 35, 42 天，低剂量组第 28, 35 天的损伤程度较对照组均有显著性差异。不同剂量组间有一定的量效关系。见表 3, 图 3。

电镜：在较早的 2 个时间点，与对照组相比，高、低剂量组动物肾组织微观结构均有异常变化，可见肾小管细胞部分区域微绒毛脱落，肾小管上皮细胞胞浆内有脂滴，边缘不光滑，有空泡；高剂量组细胞器结构略减少。见图 4。

3.5 标志物组合分析
标志物组及联合检测组合的 ROC 曲线及分析结果如下，见表 4，图 5～6。单一标志物 uNGAL, KIM-1, IL-18 表现出较高的检验效能，AUC 分别为 0.846, 0.837, 0.863（P < 0.01）。而 BUN 和 CR 的曲线面积均小于 0.5。

计算得 Logistic 回归方程为：
\[
P = 1 / \left[1 + e^{-(15.589 + 0.012x_1 + 0.498x_2 - 0.432x_3)} \right]
\]
与相应的单一标志物相比，联合检测组合 uNGAL + KIM-1 + IL-18 的曲线下面积（AUC 0.947）明显增大。且与 BUN 和 CR 相比，组合的检验效能亦有大幅度提高，有显著性差异（P < 0.01）。

表 3 商陆所引起的大鼠肾损伤程度分级及 Radit 分析（n = 6）

<table>
<thead>
<tr>
<th>级别</th>
<th>检查项目</th>
<th>0.01</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>对照</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>对照</td>
<td>0</td>
</tr>
</tbody>
</table>

4. 讨论

中药商陆系商陆属植物商陆 Phytolacca acinosa Roxb. 和垂序商陆 P. americana L. 的干燥根。味
图 3 商陆水煎液对大鼠肾脏组织的影响（光镜，×200）
Fig. 3 The effect of Phytolaccae Radix on rat kidney tissue in different timepoint (by light microscope, ×200)

图 4 商陆水煎液对大鼠肾脏组织的影响（电镜）
Fig. 4 The effect of Phytolaccae Radix on rat kidney tissue in different timepoint (by electron microscope)

表 4 商陆所致的大鼠肾损伤标志物 ROC 曲线参数
Table 4 The ROC curve parameters of markers in rat renal injury induced by Phytolaccae Radix

<table>
<thead>
<tr>
<th>标志物</th>
<th>曲线面积</th>
<th>标准差</th>
<th>P值</th>
<th>95% 置信区间 下限</th>
<th>95% 置信区间 上限</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN</td>
<td>0.466</td>
<td>0.059</td>
<td>0.548</td>
<td>0.351</td>
<td>0.581</td>
</tr>
<tr>
<td>CR</td>
<td>0.236</td>
<td>0.047</td>
<td>0.000</td>
<td>0.144</td>
<td>0.329</td>
</tr>
<tr>
<td>TP</td>
<td>0.641</td>
<td>0.050</td>
<td>0.012</td>
<td>0.543</td>
<td>0.740</td>
</tr>
<tr>
<td>ALB</td>
<td>0.479</td>
<td>0.060</td>
<td>0.707</td>
<td>0.361</td>
<td>0.597</td>
</tr>
<tr>
<td>uTP</td>
<td>0.284</td>
<td>0.065</td>
<td>0.000</td>
<td>0.156</td>
<td>0.412</td>
</tr>
<tr>
<td>uALB</td>
<td>0.496</td>
<td>0.059</td>
<td>0.940</td>
<td>0.381</td>
<td>0.611</td>
</tr>
<tr>
<td>uNGAL</td>
<td>0.846</td>
<td>0.050</td>
<td>0.000</td>
<td>0.749</td>
<td>0.943</td>
</tr>
<tr>
<td>KIM-1</td>
<td>0.837</td>
<td>0.048</td>
<td>0.000</td>
<td>0.743</td>
<td>0.931</td>
</tr>
<tr>
<td>IL-18</td>
<td>0.863</td>
<td>0.040</td>
<td>0.000</td>
<td>0.785</td>
<td>0.941</td>
</tr>
<tr>
<td>uNGAL +</td>
<td>0.947</td>
<td>0.023</td>
<td>0.000</td>
<td>0.903</td>
<td>0.992</td>
</tr>
<tr>
<td>KIM-1 + IL-18</td>
<td>0.947</td>
<td>0.023</td>
<td>0.000</td>
<td>0.903</td>
<td>0.992</td>
</tr>
</tbody>
</table>

图 5 传统肾功能指标的 ROC 曲线
Fig. 5 The ROC curve of conventional indicators

图 6 肾损伤标志物及组合的 ROC 曲线
Fig. 6 The ROC curve of renal injury biomarkers and the combination

苦、性寒，有毒。逐水消肿，通利二便，解毒散结。临床主要用于治疗血小板减少性紫癜、急慢性肾炎、肾水肿、尿毒症、慢性气管炎等。现有研究发现，商陆使用较早、程度较深，第 14 天即有局灶性改变。第 21 天起各剂量组均出现肾小管上皮细胞脱落坏死，且持续至给药结束，高、低剂量组均相继出现蛋白管型，且数目逐渐增多。给药 5 周亦观察到肾皮质局灶性炎症细胞浸润、间质纤维化等。恢复期部分损伤可逆。电镜观察在较早的 2 个时间点，各剂量组肾小管微结构中已有微绒毛脱落、胞浆脂滴等异常。

BUN, CR, uTP 在给药期间多表现持续的下降趋势，对此现象目前尚无很好的解释。相关研究还有待于进一步深入。但 uALB 于第 21 天起显著性
升高，持续至给药后，可提示肾损伤的发生。停药后均恢复正常。尿液NGAL、KIM-1、IL-18第14天起显著性升高，恢复期未高剂量组KIM-1仍有显著性升高。结合病理损伤，其变化的早期性以及生物学意义得到证实。ROC曲线分析三者的检验效能远远高于BUN和CR，且差异具有统计学意义。而联合检测的ROC面积甚至大于0.95。

肾损伤通常的检查方时如生化指标或病理检查，都是损伤形成后的表现，在早期缺乏一定的敏感性。近年来陆续发现了多种有预测价值的肾损伤标志物NGAL、KIM-1、IL-18等，敏感性均优于BUN和CR，并在临床肾脏病，药物性肾损伤，心导管介入术后等肾损伤等多个领域起到了一定的早期预测作用。相比之下，尿液标志物可无创伤连续采集，临床检测的实用性更强。

KIM-1是一种跨膜蛋白质，在肾脏中不表达，于正常成人肾脏中有微弱表达，但发生缺血或中毒性损伤时，于去分水近端小管上皮细胞过度表达，KIM-1的外功能区断裂后的产物能够通过尿液排出[5]，因此检测尿液中KIM-1水平可间接评价肾脏特别是肾小管损伤情况。KIM-1的生物学特性对缺血性或肾毒性导致的肾损伤的早期诊断和对肾小管上皮细胞的高度特异性。但它的出现一般在肾损伤发生后的12～24h内升高缓慢，另外在显影剂导致的肾损伤、慢性肾病、尿路感染或其他原因引起的肾损伤中表达不显著。

NGAL是脂质运载蛋白超家族中的一员，通过与嗜铁载体结合参与细胞中的转运，调控细胞再生、修复及凋亡。主要在增殖细胞核抗原中表达，在肾脏近端小管呈阳性[6]。当上皮细胞受到刺激时会显著性升高[7]。大量研究证实，对建立的缺血性或肾毒性动物模型，出现急性肾损伤后很快可在血清及尿液中检测到NGAL。通过光密度图分析，NGAL是一个最早、最可靠的诱导基因表达产物在肾脏中被检测出来。

IL-18是一种主要由单核巨噬细胞产生的促炎症细胞因子。急性肾损伤后在近端小管上皮细胞内被诱导表达，胞内半胱氨酸蛋白酶capase-1将其由无活性的前体形式转化为活化形式[8]，后进入小管液中。尿IL-18的敏感度较高，对诊断缺血性肾损伤具有特异性。Parikh等[9]提出它还作为将急性肾小管坏死从其他类型的急性肾脏疾病中区分开来的有效工具。

不同的标志物对肾损伤预测都具有各自的优点和价值，但是当多种标志物联合评价时，其检验效能在一定程度上更为突出，能够更精确的反映肾损伤。

一些临床研究已经证实标志物联合检测的价值[10–11]。对uNGAL+KIM-1+IL-18的联合检测，国外一项临床研究显示：尿NGAL在术后2小时开始表达增多，术后6小时到达峰值；尿IL-18水平在术后6小时开始逐渐升高，术后12小时到达峰值。两指标的持续时间呈相关性。故提出尿NGAL和尿IL-18可以作为诊断肾损伤的早期预测性序贯标志物[12]。而KIM-1在肾损伤发生的12～24h内变化缓慢，表现出一定的滞后性。所以，这样3个指标的组合，从组成上表现出取长补短的结合方式，从时间分布上来看也“衔接得当”。覆盖了肾损伤的早期阶段。

根据文献报道[13]，这里采用了结合 Logistic 回归的 ROC 曲线分析方法。研究中 uNGAL + KIM-1 + IL-18 组合对商陆所致的大鼠肾损伤模型的 Logistic 回归方程，可用于未知样本的损伤预测。将预测的尿液NGAL、KIM-1、IL-18的含量值代入方程即可得到该样本的预测概率值。将组合在该模型的最佳评价值相比，故大于则可推断肾损伤的存在。

综上所述，多次给予40,20g/kg商陆水煎液可致大鼠肾损伤，以肾小管为主要部位，以肾小管上皮细胞脱落坏死、蛋白管型为主要表现，损伤程度与剂量呈正相关。传统肾功能指标BUN和CR，没有显著性升高；而肾损伤标志物NGAL、KIM-1、IL-18的显著变化多早于常规生化指标的升高和病理损伤的出现，在一定程度上预测或提示了药物性肾损伤的发生和发展，其各自具有的生物学意义也表现出对肾损伤部位的特异性。其联合检测表现出极高的检验价值，能够更早、更准确的预测和反映肾损伤的状态，可用于药物性肾损伤的评价。

【参考文献】
[1] 王瑞，李文艳，赵森森，等．商陆药材中商陆皂苷的含量测定[J]．时珍国医国药，2010，21（5）：1066．
[4] 李晓红．蜕皮克，路权云，等．中药陆诱发小鼠骨髓细胞微核率的实验研究[J]．中国优生与遗传杂志，2001，9（5）：41．
Characteristics of changes in urinary NGAL, KIM-1 and IL-18 in Phytolaccae Radix-induced renal injury in rats and significance of combined detection

LI Yi-fei, XU Ting-ting, YAO Guang-tao*, JIN Ruo-min
(Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)

[Abstract] Objective: To explore the characteristics of changes in neutrophil gelatinase-associated lipocalcin (NGAL), kidney injury molecule-1 (KIM-1) and interleukin-18 (IL-18) in Phytolaccae Radix-induced kidney injury in rats and the significance of the combined detection. Method: Wistar rats were divided into three groups: high and low dose (crude drug 40, 20 g·kg⁻¹·d⁻¹) Phytolaccae Radix decoction groups and the control group, and orally administrated with distilled water or equal volume of Phytolaccae Radix decoction for 35 consecutive days. Their blood and urine samples were collected on day 7, 14, 21, 28, 35, 42. The anatomical analysis was conducted for each group. The contents of serum total protein (TP), albumin (ALB), blood urea nitrogen (BUN), creatinine (CR) and urinary TP and ALB were detected by means of biochemical analyzer. The concentrations of urinary NGAL, KIM-1 and IL-18 were measured by enzyme-linked immunosorbent assay (ELISA). The morphological changes of renal pathology were observed by light or electron microscopy. The curve areas of various serum or urine indexes and the combined detection were compared by receiver operating characteristic curve (ROC curve). Result: Rats were given Phytolaccae Radix decoction at the doses of 40, 20 g crude drug/kg daily for 35 consecutive days to induce kidney injury characterized by the degeneration of renal tubular epithelial cell and protein cast. The injury was partially reversible during the recovery period. Compared with the control group, the content of serum BUN, CR and urinary TP in each dose group mostly showed a downward trend. On day 21, the content of urinary ALB obviously increased till the end of administration. The contents of urinary NGAL, KIM-1 and IL-18 began increasing on day 7. Since day 14, high and low dose groups showed significant difference (P < 0.01). The high dose group even showed notable changes during the recovery period. According to ROC analysis, the curve areas of NGAL, KIM-1 and IL-18 were 0.846, 0.837 and 0.863 (P < 0.01), respectively, much higher than that of BUN and CR. The area of the combined detection was up to 0.947. Conclusion: Urinary NGAL, IL-18 and KIM-1 could forecast and indicate the occurrence and development of renal injury to some degree, and show higher sensitivity and site specificity. The combined detection could further improve the test efficiency.

[Key words] NGAL; KIM-1; IL-18; combined detection; Phytolaccae Radix; ROC
doi:10.4268/cjcm20122322